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1 Some theory of C*-algebras

In this section, we give the definition of Banach algebras, C*-algebras and related no-
tions. Then we review the spectral theory of Banach and C*-algebras. Finally, we prove
the Gelfand-Naimark theorem and the existence of a continuous functional calculus for
normal elements.

1.1 Basic definitions

Definition 1.1 (Banach and C* algebras). All algebras are over the field C.

(a) A Banach algebra is an algebra A together with a norm that turns it into a Banach
space and is submultiplicative, that is

labll < lafflib]l  Va,b e A.

(b) A x-algebrais an algebra A together with an anti-linear involution A — A, a — a*,
the x-operation, such that

(ab)* =b*a” Va,b € A.

(c) A C*-algebra is a Banach algebra with a x-operation satisfying the C*-property

la*al =[lal*  VaeA. (1)

(d) A Banach algebra A is unital if A has a unit 1 # 0 such that ||1|| = 1. (For C*-
algebras, this follows from (1).)

The following facts will be used throughout without mentioning.

Lemma 1.2. In any (unital) C*-algebra, we have

lafl =la*l  and 1" =1. ()

Proof. To see the first identity, calculate ||a||* = ||a*a|| < ||a*||||a||, hence ||a|| < [|a*||;
replacing a by a* yields ||a*|| < |a|. To see the second identity, observe that 1*a =
(a*1)* = (a*)* =1 forall a € A; therefore 1 = 1*1 = 1*. O



Example 1.3 (Continuous functions). Let X be a locally compact Hausdorff space. The
space

Co(X) ={f : X = C continuous | Ve > 03K C X compact : ||flx\k|leo < €}

is a commutative Banach algebra with pointwise multiplication and the supremum
norm |||l = sup, , [f(x)]. Itis even a C*-algebra with f*(x) = f(x) (pointwise complex
conjugation). Co(X) is unital if and only if X is compact. In that case, Co(X) = C(X), the

algebra of continuous functions on X.

Example 1.4 (Algebras of operators). Let H be a complex Hilbert space.

(1) B(H), the algebra of bounded operators on H, is a unital Banach algebra with re-
spect to the operator norm. It is commutative precisely when dim(H) < 1. Itis
even a x-algebra with respect to taking the adjoint map.

(2) K(H), the algebra of compact operators on H, is a closed subalgebra of B(H). Since
taking adjoints preserves K(H), it is a C*-algebra. It is unital precisely when H is
finite-dimensional and commutative precisely when dim(H) < 1.

Example 1.5 (Direct sums). If A, B are Banach algebras (C*-algebras), their direct sum
A @ B is a Banach algebra (C*-algebra) with the norm ||(a, b)|| := sup{||a]|, ||b||}.

Example 1.6 (Quotients). If A is a Banach algebra an ] C A is a closed ideal, then A/]
is a Banach algebra with the norm ||[a]|| = inf{||a + b|| | b € J}. If A is a C*-algebra,
things are slightly involved. First of all, it is a fact that any closed ideal | of A is
automatically *-closed, i.e. a* € Jforall a € J [3, Thm. 3.1.3]. Therefore, the *-operation
[a]* := [a*] is well-defined on A/]. Hence A/] is a %-algebra, but showing the C*-
identity ||[al||* = ||/[al*[al|| is rather tricky; one way to see this is via approximate units
(see e.g. [3, Thm. 3.1.4] or [2, Prop. 1.8.2]). For another approach, see [4, Exercise 1.B].



Example 1.7 (Matrix algebras). If A is an algebra and n € N, the algebra M,,(A) the
algebra of n x n matrices with entries in A is an algebra with matrix multiplication. If
A is x-algebra, there is a *-operation on M, (A) given by

*

ap; - ain a’ﬁ a
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turning also M, (A) into a *-algebra. If A is moreover a C*-algebra, Lemma 1.38 shows
that there is a suitable norm on M,,(A) turning it into a C*-algebra.

Definition 1.8 (Homomorphisms). Let A, B be algebras.

(@) A homomorphism ® : A — B is a linear map which is multiplicative, that is ®(ab) =
®(a)®(b) for a,b € A.

(b) If A and B are unital, then we say that ® is unital if ®(14) = 15.

(c) If A and B are *-algebras, a *x-homomorphism is a homomorphism @ : A — B such
that ®(a*) = ®(a)* forall a € A.

Remark 1.9. If A, B are Banach algebras, we do not require continuity of homomor-
phisms @ : A — B. Instead, continuity is often automatic (see e.g. Prop. 1.16 and
Lemma 1.22).

Example 1.10. If B is another C*-algebra and @ : A — B a *-homomorphism, we get
an induced *-homomorphism M,,(®) : M,,(A) — M,,(B), which is given by

app 0 Qin ®(ay) -+ @(am)
— TN : : (3)
ant -+ Qnn (D(anl) q)(ann)
Clearly, associating matrix algebras assembles to a functor that sends the category of

C*-algebras and *-homomorphisms to itself. For convenience, we will usually just
write again @ instead of M,,(®).



1.2 Spectral theory

Definition 1.11. Let A be a unital Banach algebra and let a € A.
(@) p(a) ={A € C| A — ainvertible} is called resolvent set of a.
(b) o(a) =C\ p(a) is called spectrum of a.

If A is moreover a C*-algebra, then
(¢) ais called normal if a*a = aa*.

(d) ais called self-adjoint if a = a*.

Example 1.12. If X is a compact Hausdorff space, then for f € C(X), we have o(f) =
{f(x) | x € X}. This follows directly from the fact that f € C(X) is invertible precisely if
f(x) # 0 for all x € X.

Example 1.13. Let H be a Hilbert space and T € B(H). The essential spectrum Oess(T)
of T consists of those A € C such that A — T is not a Fredholm operator. Remember
here that T is called Fredholm if it has closed range and finite-dimensional kernel and
cokernel; equivalently (by Atkinsons’s theorem), it is one that admits a parametrix, that
is an operator S such that TS —idy, ST —idy € K(H). Clearly, the latter condition is

equivalent to saying that the class [T] is invertible in B(H)/K(H). We conclude that
Oess(T) = o([T]), the spectrum of [T] in B(H)/K(H)

Proposition 1.14. Let A be a unital Banach algebra and let a € A.
(@) p(a)is open.
(b) o(a) is compact, more precisely, |A| < ||a|| for all A € o(a).
(c) o(a) #0.
If A is moreover a C*-algebra, then

(d) if ais normal, then ||a||? = ||a?|| and ||a|| = sup{]A| | A € o(a)};



(e) if a is self-adjoint, then o(a) C R.

(f) o(a*a) C Rxo;

Proof. Except for (f), these results are proven just as the special case A = B(H). As-
sertion (f) is non-trivial; a proof can be found in [3, §2.2]. O

Proposition 1.15. Any x-algebra has at most one submultiplicative norm satisfying the
C*-property with respect to which it is complete.

Proof. This follows from the fact that the norm is determined by the algebra structure:
Forall a € A,
|al|* = ||a*a| = sup{[A| | A € o(a*a)},

where the first equality is the C*-property and the second equality follows from
Prop. 1.14(d), as a*a is normal. O

Proposition 1.16. Let A and B be a unital C*-algebras. Then any unital *-
homomorphism @ : A — B is contractive, i.e. |®@(a)| < ||a|| forall a € A.

Proof. Let a € A and A € p(a). Then A — a is invertible, say (A — a)b = 1. Since @ is

unital,
1 = O(14) = O((A — a)b) = (A — ©(a))D(b).

we conclude that A— ®(a) is invertible, with inverse @ (b), hence A € p(®(a)). Hence
p(a) C p(@(a)) and o(P(a)) C o(a). Now by the C*-property and Prop. 1.14(d),

|@(a)[|* = |®(a)*@(a)|| = sup{[Al | A € o(D(a)*D(a)))}
< sup{Al | A € o(a*a))} = ||a*al = ||a|*.

This finishes the proof. O

Theorem 1.17 (Gelfand-Mazur). Let A be a unital Banach algebra where every element
0 # a € A isinvertible. Then A is one-dimensional.

Proof. Let a € A. Since o(a) # () (Prop. 1.14(c)), we can choose A € C such that A — a
is not invertible. Hence by assumption on A, a — A = 0, i.e. a is a multiple of the
identity. O



1.3 The unitalization

Definition 1.18. Let A be a C*-algebra. Its unitalization A" is the unital x-algebra with
underlying vector space A" = A @ C, product

((1,7\) ’ (b) H) = (ab +Ab + Ha>7\H)

and x-operation 3
(a,A\)* := (a*,A).

That the product and *-operation given above indeed turn A* into a x-algebra is a
straightforward calculation. The identification a — (a,0) embeds A into A", and we
just write A C A". One easily checks that A is an ideal in A*. In fact, it is the kernel of
the augmentation map, which is the *-homomorphism

er: At — C, eala,A) =A.

Proposition 1.19. For any C*-algebra A, the x-algebra A is a C*-algebra, that is, there
exists a unique norm of A" that turns A" into a C*-algebra.

Proof. We have to prove the existence; uniqueness then follows from Prop. 1.15. If
A is unital, we have A* = A & C as x-algebras (via the isomorphism (a,A) — (a +
Alx,A)) and A @ Cis a C*-algebra.

Assume now that A is non-unital. In this case, we define a norm by

I(a, A)|[ := sup [|ab + Ab, 4)

[[bll<1

where the supremum is taken over all b € A with ||b|| < 1 and the norm on the
right hand side is the norm of A. The norm is definite because ||ab + Ab|| = 0 for all
b € A would mean that either A = 0 and hence a = 0 or —A"'a is a unit for A. It is
submultiplicative because

|(a,A) - (b, u)|| = sup |jabc + Abc + pac + Apc||

llell<
bc + + A(bc +
— sup la(be + pe) 4+ Albe ”C)”||bc+uc||
be+pe#0 HbC + HCH
< sup|[d] < Tad+Ad| - sup [Jac + Ac|| = ||[(a, A)[[[|(b, w]|.

[[ell<1

We verify that the norm verifies the C*-identity. To this end, we first observe that in



any C*-algebra, we have the identity

lall = sup [[abl| = sup [[bal, (5)

[[bll<1 [bll<1

since on the one hand, if ||b|| < 1, then ||ab|| < ||a|/||b]] < ||a| by submultiplicativity,
and on the other hand, the C*-identity implies ||a|| = ||ab|| for b = ||a]|'a*. Now

I, M) (@, )] = l(a*a+Aa+Ad*, AR)]

= sup ||(a*a +Aa +Aa*)b + AP*b|
[blI<1

= sup sup |lc(a*a +Aa+Aa*)b + c/Al’b||

l[ell<T[[bll<1
> sup |[b*(a*a +Aa +Aa*)b + b*Al*b|
[[bll<T
= sup ||(ab + Ab)*(ab + Ab)||
[[blI<1
= sup ||ab + Ab|?
[[bll<1
= [[(a,N)]%,

where we used the C*-identity of the norm of A. The inequality ||(a,A)*(a,A)|] <
|(a,A)|| follows from submultiplicativity.

Completeness follows from the following lemma from functional analysis: If V is a
normed vector space and W C 'V is a subspace of codimension one which is complete with
respect to the induced norm, then V is also complete. Indeed, W := A has codimension
one in V := A*, and the norm that (4) induces on W its original norm by (5). Hence
by the lemma, V = A™ is complete. O

Remark 1.20. The obvious norm ||(a,A)||; := ||a|| + |A| turns A" into a Banach algebra,
but it does not satisfy the C*-property. However, by (4), we have ||(a,A)|| < [[(a,A)]};.
Hence the identity map from A* with the norm || - ||; to A" with the norm (4) is
bounded. It then follows from the open mapping theorem that also its inverse is
bounded, hence both norms are equivalent.

If A, B are C*-algebras and ® : A — B is a *-homomorphism, we obtain a unital
*-homomorphism

O AT BT, O (a,A) = (O(a),A).

It is straightforward to check that A — A™, ® — @7 defines a functor (the unitalization
functor) from the category of C*-algebras and *-homomorphisms to the category of
unital C*-algebras and unital *-homomorphisms. In fact, since eg 0 @ = ¢,, the target
category of the unitalization functor is the category of augmented unital C*-algebras
together with compatible unital *-homomorphisms. This observation motivates the
definition of the Ky-functor below.



Remark 1.21. The unitalization of a C*-algebra A has the following universal property.
For any unital C*-algebra B and any #-homomorphism ® : A — B (not necessarily
unital if A is unital), there exists a unique unital *-homomorphism ®* : A* — B that
restricts to ® on A C A*. Hence the unitalization is a left adjoint to the forgetful functor
from the category of unital C*-algebra and unital *-homomorphisms to the category of
C*-algebras and *-homomorphisms.

1.4 The Gelfand-Naimark theorem

Lemma 1.22. Let A be a Banach algebra. Then every homomorphism ¢ : A — Cis
continuous with ||@|| < 1. If A is unital, we have more precisely either ||¢| = 1 or

@ =0.

Proof. Suppose that 1 < ||¢|| < co. Then there exists a € A with |@(a)| > |la||. Set
a’:= @(a)'a; then @(a’) = 1,but ||d|| = |p(a)l'|la|| < 1. Set b =Y >, (a')", where
the series converges absolutely as ||a’|| < 1. Then b = a’ + a’b and therefore

@(b) = @(a’) + @(a)e(b) =1+ ¢@(b),

a contradiction. Hence ||| < 1.
If now ¢ # 0, then there exists a € A with @(a) # 0. Again setting a’ = ¢(a)'a, we
have @(a’) = 1. Therefore, if A has a unit,

11 =1=¢(d) = @(a1) = @(a’) @(1) = ¢(1),
=1

hence ||| > 1. O

Definition 1.23. For a Banach algebra A, the Gelfand space is the set

I'a :=={¢@ : A = C homomorphism, ¢ # 0}.

By Lemma 1.22, each ¢ € T} is in fact continuous, i.e. an element of the dual space A’
of the Banach space A. Remember that A’ carries the weak-*-topology, which can be
characterized as the coarsest topology such that for each a € A, the linear functional
a:A’— C,ale) = @(a) is continuous.

Lemma 1.24. Let A be a unital Banach algebra and ] C A a maximal ideal. Then J is
closed.

10



Proof. Let ] be a maximal ideal (in particular proper!). Then, by continuity of the
multiplication, its closure ] is again an ideal. Since ] C J and ] is maximal, we have
either ] = J or ] = A. The latter means that | is dense in A; we show that this is not
possible. Namely, any a € A with |1 — a|| < 1 is invertible, with inverse given by
the Neumann series a™' = Y >° (1 — a)™ On the other hand, if | is dense, it must
have a non-trivial intersection with the open set {a | |1 — a|| < 1}, hence contain
an invertible element. But this would imply ] = A, which is impossible since | is a
proper ideal. O

Proposition 1.25. Let A be a unital commutative Banach algebra.

(a) Ta equipped with the weak-*-topology is a compact Hausdorff space, and for each
ac A, wehave a e C(I).

(b) Every maximal ideal ] C A is of the form | = ker(¢) for ¢ € I's.
(c) We have 'y # 0. More precisely, o(a) ={@(a)| @ € Tx}forall a € A.
(d) Foralla € A, o(a) = o(a).

Proof. (a) We have

M= [){e Al olab) —pla) —(b) =0}N{p € A" (1) = 1}.

a,bcA

Since the maps A’ — C, ¢ — ¢(a) are weak-*-continuous for each a € A (by the
above characterization of the topology), we see that I'y is closed. On the other hand
Lemma 1.22, we have ||@|| = 1 for each ¢ € T4, hence T4 is a subset of the unit ball
of A’, which is compact with respect to the weak-+-topology, by the Banach-Alaoglu
theorem. We conclude that 'y is a closed subset of a compact set, hence compact. The
a are continuous, again by the characterization of the weak-*-topology.

(b) It is a general fact that for a commutative ring A, the quotient A/] by an ideal |
is a field if and only if ] is maximal. Suppose that ] is a maximal ideal, so that A/]
is a field. Now, any maximal ideal in a Banach algebra is closed by Lemma 1.24,
and the quotient of a Banach algebra by a closed ideal is again a Banach algebra
(see Example 1.6). From Thm. 1.17, we therefore get A/] = C. The quotient map
@ : A — A/] = Cisahomomorphism with ker(¢) = J. Conversely, since for ¢ € T,
the quotient A/ ker(¢) = C is a field, ker(¢) must be a maximal ideal.

(c) First Ty # 0 by (b), as any ideal is contained in a maximal ideal (Zorn’s lemma!).
Suppose that A ¢ o(a), so that A — a is invertible. Then for every ¢ € 'y, (A —a) =
A — @(a) € C is non-zero by multiplicativity of ¢. Hence A ¢ {@(a) | ¢ € Ta}
This shows that {¢(a) | a € A} C o(a). Conversely, suppose that A € o(a). Then
] ={(A—a)b|b e A}is anideal. It is proper since 1 € ] would imply 1 = (A — a)b
for some b € A, hence b = (A — a)”', a contradiction. Therefore, | is contained

11



in a maximal ideal, which by (b) is of the form ker(¢) with @ € I'x. We obtain
@((A—a)b) = 0 for each b € A; in particular for b = 1, we get @(a) = A, hence
o(a) C{e(a) | @ €Tal.

(d) Since @ € C(T'a), Example 1.12 gives

o(a) ={ale) | eTa} ={p(a) | @ € Ta}.

But this equals o(a) by (c). O

Theorem 1.26 (Gelfand representation). Let A be a commutative unital Banach alge-
bra. Then A — C(Ta), a — a, called Gelfand transform, is a unital homomorphism
with

@l = supl\l | A € o(a)} < [Ja].

Proof. We have
(@b)(¢) = d(e)b(¢) = @(a)p(b) = @(ab) = ab(e),  &(p) = p(e) =1.
Hence the Gelfand transform is a unital algebra homomorphism. Moreover,

@]l = sup{lal(e)l| @ € Ta} =sup{le(a)l | @ € TaA} =sup{]A[| A € o(a)},

where in the last step, we used Prop. 1.25(c). By Prop. 1.14(b), this is estimated by
- O

Theorem 1.27 (Gelfand-Naimark). Let A be a commutative unital C*-algebra. Then
the Gelfand transform A — C(T'a), a — d is an isometric *-isomorphism.

Proof. We show that the Gelfand transform is a *-homomorphism, i.e. a* = a. First
let a be self-adjoint, for which we have to show that aisreal. Because ais self-adjoint,
we have o(a) C R (Prop. 1.14(e)). But by Prop. 1.25(d) and Example 1.12, we have

R > o(a) =o(a) ={a(e) | ¢ € Ta}

Hence a is real-valued. The general case follows from writing

. 1 o o] .
a—b+1c—z(a+a )+12—i(a—a).

Then b and c are self-adjoint and by the previous step,

— A

at=b*—ic*=b—ic=b+ic=

i

(@]
o)l

12



We show that the Gelfand transform is isometric. Since A is commutative, any a € A
is normal, hence

|la|l = sup{|Al | A € o(a)} (Prop. 1.14(d))
= sup{[A| | A € o(Q)} (Prop. 1.25(d))
=sup{a(e) | ¢ € Ta} (Example 1.12)
= [|aflo-

We use the theorem of Stone-Weierstraf to show that A C C(T'a) is dense. To this
end, we have to show that

(1) A seperates points, i.e. if for ¢, € Ty, we have d(¢) = a() forall a € A, then
¢ = 1. But this is clear since ¢ =1 € A’ if ¢(a) =P(a) forall a € A.

(1) No evaluation functional vanishes, i.e. for all ¢ € T, there exists a € A with
a(e) # 0. Again, this is clear, because if for some ¢ € I', one has d(¢) = ¢(a) =
Oforall a € A, then @ =0, hence ¢ ¢ Tx.

(iii) A is closed under complex conjugation. But this follows since for a € A Q=
ot € A.

We conclude that A is dense in C(T'a). But since a — @ is isometric, A is also closed,
hence A = C(T). O

Remark 1.28. It follows from the proof that if A is a C*-algebra any algebra homomor-
phism ¢ : A — C is automatically x-preserving. Namely, for any a € A,

—

p(a’) = a*(p) =

o)

() = o(a).

Theorem 1.29 (Spectral permanence). Let A be a unital C*-algebra and let B be a closed
subalgebra containing the unit. Then for any a € B, we have o5 (a) = og(a).

Proof. Clearly, oa(a) C og(a). Indeed, if A — a is not invertible in A, then it cannot be
invertible in B. To show the converse, it suffices to show that if a € B is invertible in
A, then a™' € B (i.e. a is even invertible in B).

Suppose first that a is self-adjoint and let By C A be the unital C*-algebra generated
by a and a™' and let B) C B be the unital C*-algebra generated by a. We want
to show that Bo C B, and we will do this by establishing that By = Bj. To this
end, notice that both By and B} are commutative since a is self-adjoint. Hence by
Thm. 1.27, B, = C(T%,) is generated by the functions @ and @' and the subalgebra
/BTO C C(Tg,) is generated by the function a. First observe that for all ¢ € I, we
have 1 = ¢(1) = @(a)p(a™'), hence ¢(a™') = 1/¢(a). We apply the theorem of
Stone-Weierstraf3. To this end, we have to show

13



(i) BAg separates points: For ¢, € Tg,, suppose that f(¢) = f(\) for all f € BAg
Then in particular for f = @, i.e. ¢(a) = P(a). But then also p(a™') =1/¢(a) =
1/P(a) = P(a'), hence ¢ and 1 agree on all Laurent polynomials in a. Since
those are dense in By, we must have ¢ = 1.

(ii) No evaluation functional vanishes: Suppose that there exists ¢ & I, such that
f(p) = 0 for all f € Bj. Then in particular ¢(a) = 0, a contradiction to 1 =
ela)p(a™).

(iii) /870 is closed with respect to complex conjugation: This is clear, since Bj is a
x-algebra and the Gelfand transform is *-preserving.

We conclude that /1370 is dense in C(T3,). But it is also closed, hence /870 = C(T3,) and
By = Bo, which was to show.

Finally, let a € B be invertible but not necessarily self-adjoint. Then (a™')* is an
inverse for a*, hence the self-adjoint element a*a € B is invertible in A with inverse
(a*a)™! = a'(a*)"". By the previous step, (a*a)~' € B, hencealso a™' = (a*a)'a* €
B. U

Theorem 1.30 (Continuous functional calculus). Let A be a unital C*-algebra and let
a € A be normal. Then there exists an isometric *-homomorphism C(o(a)) — A,
f — f(a), such that the identity function on o(a) is mapped to a.

Proof. Let Ay C A be the C*-algebra generated by a, in other words the closure of
the subalgebra of all polynomials in a and a*. Since a is normal, A, is commutative,
hence Gelfand transform gives an isomorphism Ay = C(I's,).

We claim that @ : Ta, — {a(@) | ¢ € Ta,}is a homeomorphism (here we used Ex-
ample 1.12 and Prop. 1.25(d)). Clearly a is surjective. We claim that a is injective.
Suppose that d(¢) = a(), i.e. ¢(a) =P(a). Then also

e(a”) =a(e") =a(e) = a(h) = a(y’).

Since @ and 1 are multiplicative, ¢ and 1\ agree on finite sums of a™(a*)™. Since ¢ is
continuous, ¢ = 1 everywhere so that @ is injective. Now @ is a bijective continuous
map between two Hausdorff spaces. We have to show that the inverse f = @' is
continuous. To this end, let K C T, be closed. Then the preimage of K under f
is f1(K) = a(K). Because Iy, is compact, so is K. Since @ is continuous, a(K) is
compact, hence closed. This shows that the preimages of closed sets under f are
closed, so f is continuous.

Finally, proof is finished by the calculation

{a(@) | @ €Ta,} = o(a) (Example 1.12)
= 0p,(a) (Prop. 1.25(d)) O
= oala). (Thm. 1.29).

14



Using the continuous functional calculus, one can show the following result on polar
decomposition in a unital C*-algebra A.

Corollary 1.31 (Polar decomposition). Let A be a unital C*-algebra and let a € A be
invertible. Then there exists a unitary u € A such that a = ulal.

Here a*a is self-adjoint and has non-negative spectrum by Prop. 1.14(f), hence its
square-root |a| = (a*a)'/? can be defined using Thm. 1.30.

Proof. Clearly, u is given by u = alal™'. We have to show that it is unitary. To this
end, we calculate

wu = (a*a)—vla*a(a*a)—]/Z — (a*a)—vl(a*a)—l/la*a — 1’
using that the map C(o(a*a)) — A is an algebra homomorphism. Showing that
uu* = 1is more involved.
We first claim that o(a*a) = o(aa*). To this end, let A € p(a*a), in other words
A — a*a is invertible. Since a is invertible, this is equivalent to the invertibility of
(A — a*a)a* = a*(A — aa*), which is then equivalent to A — aa* being invertible.
Hence p(a*a) = p(aa*), which implies the result on the spectra.
We now claim that f(a*a)a* = a*f(aa*) for all f € C(o(a*a)) = C(o(aa*)). Because
of the calculation

(a*a)*a* = (a*a)(a*a)--- (a*a)a* = a*(aa*)(a---a*)(aa*) = a*(aa*)k,

this is true for any polynomial f. Since polynomials are dense in C(o(a*a)) by the
Weistraf§ approximation theorem, the claim follows.
Finally, we have

—1/2 %

uu* = a(a*a) ?(a*a)?a* = a(a*a)'a !

=aa*(aa”)”' =1,

*

where in the second step, we used the identity f(a*a)a* = a*f(aa*) with f(x)
x 12,

|

Corollary 1.32. Let A, B be unital C*-algebras and let ® : A — B be an injective unital
*-homomorphism. Then ® is isometric.

Proof. Assume the converse. Since by Prop. 1.16, ® is contractive, there this would
mean that there exists a € A with ||a|| = 1, but |®(a)| = Ay < 1. By the C*-
identity, also ||a*al| = 1 and Since @ is a *-homomorphism, also ||®(a*a)| = A} < 1.
Therefore, we can choose a continuous function f € C(o(a*a)) such that f(A) = 0
on [0,A%] and f(1) = 1. As seen in the proof of Prop. 1.16, o(®(a*a)) C o(a*a). We
claim that ®(f(a*a)) = f(®(a*a)). Indeed, this holds for f a polynomial since @ is a
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homomorphism; the general case follows since polynomials are dense in C(o(a*a)).
Now ||a*al| = 1 means that 1 € o(a*a) (Prop. 1.14(d)), hence

If(a*a)|| = sup{[f(A)|| | A € o(a*a)} =T.

But since |®(a*a)|| = A3, we have o(®(a*a)) C [0,A]], hence ®(f(a*a)) =
f(®(a*a)) = 0. This contradicts the injectivity of ®. O

Definition 1.33 (Representation). Let A be a C*-algebra.

(a) If His a Hilbert space, a *-homomorphism p : A — B(H) is called a *-representation.

(c) A x-representation on a Hilbert space H is called irreducible if whenever V C H is a
closed subspace such that p(a)v =0foralla € A,v € H, then V = {0}.

Theorem 1.34 (Gelfand-Naimark, non-commutative version). Let A be a C*-algebra.
Then there exists a Hilbert space H together with a faithful and isometric *-
representation p : A — B(H).

Proof sketch. After possibly replacing A by A", we may assume that A is unital. The
Gelfand space I'y is “too small” to characterize A when it is not commutative; indeed,
since for @ € Ty,

@(ab—ba) = @(a)e(b) —@(b)e(a) =0,

the Gelfand space 'y only depends on the commutator subspace A/[A, A].
In the non-commutative case, we therefore instead consider the space

Sa:={@:A — Ccontinuous |[Va € A: p(a*a) >0, |¢]| =1} C A/

where we give up on the requirement that ¢ is multiplicative. For any such ¢, the
obtain a (semi-) positive Hermitean form (a, b) := ¢(a*b) on A. The corresponding
completion H,, is a Hilbert space that comes with a *-representation p, : A — B(H)
defined by p,(a)[b] := [ab]. One then defines

H=@H,, o=, (6)

PESA PESA

and shows that the corresponding p is faithful. It is isometric by Corollary 1.32. [

Remark 1.35. As obvious from formula (6), the representation of A constructed in the
proof above is typically not separable (namely as soon as S, is an uncountable set).
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Some algebras in fact to not have a separable representation, e.g. the Calkin algebra
Q(H) :==B(H)/K(H), for H a separable Hilbert space [5, Satz IX.3.16].

1.5 The spatial tensor product

In this section, we define the spatial tensor product of C*-algebras, in particular in or-
der to put C*-norms on matrix algebras M,,(A) over C*-algebras A. General references
for the theory of tensor products on C*-algebras are [4, §T.5] and [1, §3].

For x-algebras A, B, the algebraic tensor product A ®,; B is an algebra, with product
determined and well-defined (!) by a; ® by - a; ® b, = aja, ® byb, for aj,a, € A,
b, b, € B. It is moreover a x-algebra with the x-operation (a ® b)* = a* ® b*.

Definition 1.36 (Spatial tensor product). Let A and B be C*-algebras.

(a) The spatial norm on A ®,, B is defined by

1x[[o := sup || (pA @ag p8)(X)[| = SUPHZ pa(ai) ® ps(bi) (7)
i=1
forx = Y",a,®b, € A ®alg B, where the supremum is taken over all *-

representations pa, pg of A and B on Hilbert spaces H, K.

(b) The spatial tensor product of A and B, denoted by A ® B, is the completion of A ®,, B
with respect to the spatial norm.

Some comments on the definition of the spatial norm are in order. First, any pair of
x-representations p,, pg on Hilbert spaces H, K defines a *-representation

PA ®alg PB - A ®alg B— ]B(H) ®alg B(K) g B(H X K)'

Here an operator X ® Y € B(H) ®.¢ B(K) is viewed as operator in B(H @ K); explicitly,
itis given by (X® Y)(2_;vi ® wi) = ), X(vi) ® Y(w;). The norm is finite, since

| X oatad @ palo0)| < 3 llpatalliiea(e:) < Y llaillibal; ®)
i=1 i=1 i=1

here we used that x-homomorphisms are contractive, by (1.16). It is non-degenerate,
as any C*-algebra has a faithful representation on a Hilbert space (by the Gelfand-
Naimark theorem 1.34) and the induced representation pa ®a; s is injective if pa and
pg are (see e.g. [4, T.5.1]). Moreover, it is clear from the definition that || - ||, satisfies the
C*-identity, hence A ® B is a C*-algebra.
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Remark 1.37. Any pair of representations pa, pg of A and B induces a C*-seminorm
on A ®,1, B by pulling back the operator norm along pa ®aiz ps. Now if py, pg is any
other pair of representations, then the direct sum representation pa @ p'y, ps ® pj clearly
induces a larger seminorm this way. This shows that in the supremum in (8), it suffices
to only consider faithful representations, because pa @ p/, is faithful as soon as one of
pa, P is faithful. It is also easy to see that we may restrict attention to irreducible
representations.

Lemma 1.38. For any C*-algebra A, we have A ® M,(C) = M, (A).

Proof. Clearly, M,(A) = A ®a5 M (C), so the point is to show that A ®,; M,,(C) is
already complete with respect to the spatial norm.

Let p be a faithful x-representation of A. The representation p, : M,(A) — B(H")
induced by p as in (3) takes the form

ap; -+ Qin V1 (I)(CI]])V] +"'+(D(a1n)vn
o [ | 5 | = : -0
any -+ Opn Vi (D(an])\)] +---+ (D(Clnn)vn

We check that p, (M, (A)) is complete in B(H"). To this end, we observe that for any
X = (Xij)i<ij<n € B(H"), one has for each i,j =1,...,n

2
XH e X]n

n
. =3 sup [[Xavi o X > X512
Xn] tee Xnn =1 =1

(m)

i Ji<ij<n € Mu(A), m € N, is is such that

pn(a™) — X € B(H"), then also p(agjm)) — Xy for all 1 < i,j < n. Since the image of
p is closed, this implies X;; = p(ay;) for some a;; € A, hence X is in the image of p,.
Now since the image of p,, is closed, pulling back the norm on B(H") to M,,(A) via p,,
gives a complete norm on M,, (A) satisfying the C*-identity. We have to show that this
norm coincides with the spatial norm. By Remark 1.37, it suffices to consider faith-
ful, irreducible representations in the definition of the spatial norm; for M, (C), any
such representation is isomorphic to the standard representation idwm, ) : Mn(C) —
B(C") = M,(C). Also, under the isomorphism M,(A) = A ® M, (C), we have
Pn = P Ralg idm, (c). Combining these two observations, we conclude that the spatial
norm of a € M, (A) = A ®ag M, (C) is given by

We conclude that, if a sequence a'™ = (a

lalle = sup [len(a)l],
p
where the supremum is taken over all faithful representations p of A. On the other
hand, we have seen above that each of the norms ||a||, := ||pn(a)|| turns M, (A) into
a C*-algebra, hence they must all be equal, by Prop. 1.15. This finishes the proof. [
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Theorem 1.39. Let A and B be C*-algebras. Then the supremum (7) is in fact a maxi-
mum, which is taken at any pair of faithful representations pa, pg. In other words, for
any x € A ®,; B and any pair of faithful representations pa, pg of A, B, we have

[1x]lc = [|(PA ®aig PB)(X)]-

In particular, if A C B(H), B C B(K) are C*-subalgebras, then A ® B is isomorphic to
the norm closure of A ®,; B € B(H ® K).

Proof. We first observe that by Lemma 1.38, the theorem is true if A is isomorphic to
M,,(C). In particular, we have

X[l = [[(ida @ pB) (x|

for any faithful representation pg of B. Namely, for any such representation, the right
hand side gives a complete C*-norm on M,,(C) ® B, which then must be all equal.
In general, let py and pg representations of A and B and let pj be faithful representa-
tion of B. We will show that for all x € A ®,5 B, we have

[(PA @aig 8) ()| < [|(PA @alg P) (X)]]. (10)

By symmetry of the tensor product construction, the same is true when replacing pa
by a faithful representation pas, and the proposition follows.

To begin with, let V be the directed system of finite-dimensional subspaces of H (see
Example 2.26). For V € V, let Py be the orthogonal projection onto V in H, and let
P, := Py ® idy, the orthogonal projection onto V ® K in H ® K. It is then an easy
lemma from functional analysis that

X[ = lim | (Py @ idp k) ) X(Py @ idg))|,

for all X € B(H ® K), where the limit is taken in the sense of nets.
We obtain that for any x € A ®q B,

“ (pA ®alg pB)(X) || = h\l;n H (PVPAPV ®alg pB)(X) H
For each V € V, the map PypaPy®a; pp is the composition of the linear map PypaPy®
idg : A ®ag B — B(V) ®a1¢ B and the x-homomorphism idg(v) ®aig P : B(V) ®ag B —
B(V ® K). Therefore, for any x € A ®alg B, we have
| (PA ®aig PB) (X)|| = li%n || (idg(v) ® ) (PvpaPy @ idg) (x)]|.

Now since idg(v) ® pg is a *-homomorphism, hence contractive (Prop. 1.16), we have

|(idev) ® pB) (PvpaPyv ®idg)(x)]| < ||(PvpaPyv ®idg)(x)||s, (11)
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where the right hand side denotes the spatial norm of B(V) ®,,; B = B(V) ® B. More-
over, by (the proof of) Lemma 1.38, we have equality in (11) if p} is faithful. Com-
bining these observations, we get that for pg an arbitrary *-representation and py a
faithful *-representation, we have

[PvpaPy Ralg p) (X) || < [[(PvpaPy ®alg pp) (X) |

for all V € V. Taking the limit over V, we obtain (10), which finishes the proof. OJ

IfO:A — A'andV¥ : B — B’ are x-homomorphisms, we get an induced *-homomorphism
O ®ag ¥ 1 A ®aig B — A’ ®q¢ B'. It is continuous because for *-representations pas and
ppr of A”and B, pas o @ and ppr o ¥ are *-representations of A, respectively B. Therefore

O ® ¥ extends by continuity to a *-homomorphism @ @ ¥ : A® B — A’ ® B". We
record the following consequence of Thm. 1.39 for later use.

Corollary 1.40. Let A, A/, B and B’ be C*-algebrasandlet ® : A — A’, ¥ : B — B’ be
injective *-homomorphisms. Then ® ® ¥ : A ® B — A’ ® B’ is injective.

Proof. If pps and pp/ are faithful representations of A’, respectively B’, then pa =
par o @ and pg := pp o ¥ are faithful representations of A, respectively B. Hence for
all x € A ®a B,

(D Raig W) (X)[|o = [|(PAr Ralg P8 ) (P Rag ¥)(X)|| = [[(pa @ p&) (X)|| = [IX||-

This shows that ® ® V¥ is isometric, in particular injective. O

Example 1.41. Let A be a C*-algebra and let X be a compact Hausdorff space. Then
Co(X)®@A = Cy(X, A), the C*-algebra of continuous A-valued functions on X vanishing
at infinity.

To see this, observe first there is an obvious injective *-homomorphism @ : Cy(X) ®q
A — Co(X,A), given by @(f ® a)(t) = f(t)a. To see that its image is dense, one first
observes that C.(X, A) (compactly supported functions) is dense in Cy(X, A), hence it
suffices to approximate a given compactly supported function f. This is done using a
partition of unity subordinate to a suitable finite open cover of the support of f. For
details, see for example [4, §T.2, p. 322].

On the other hand, we claim that ® is continuous with respect to the spatial norm on
C(X) ®aig A. To this end, for a Hilbert space H, let ?(X, H) be Hilbert space of functions
o : X — C with countable support x1,x,, - - - € X such that }_ > | |a(x,)|* < oo; we write
*(X) if H = C. Now we have a faithful *-representation n : C(X) — ¢*(X), given by
u(fla = f - o, and given a faithful representation pa of A on a Hilbert space H, the
*-representation 0 ®,, pa of C(X) ®ag A on ?(X) ® H = £2(X, H) takes has an obvious
extension to an injective (hence isometric) *-representation p of C(X;A) on ¢*(X,H)
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such that p o ® = 0 ®,, pa. Now for any x € C(X) ®,; A, we have

QX[ = [I(p o @)(x)]| = [|(6 Rarg pA) X)[| = [Ixlo-

Here in the last step, we used Thm. 1.39. This finishes the proof.

2 The Ky-functor

In this section, we define the Ko-group Ky(A) of a C*-algebra A. We then state and
prove its main properties.

2.1 Equivalence of projections

Throughout this section, for C*-algebras A, we denote by A the C*-algebra given by A
if A is unital and A" if A is non-unital.

Definition 2.1 (Projections, Isometries, Unitaries). Let A be a C*-algebra.
(a) p € A is called projection if p* = p and p* = p.
(b) v € Ais called partial isometry if v*v is a projection.

(c) If A is unital, u € A is called unitary if uw*u = uu* =1.

Lemma 2.2. Let A be a C*-algebra and let v € A be a partial isometry, so that p = v*v
is a projection. Then also q = vv* is a projection. Moreover,

v=w'v=vp = qv, V' =v'wW' =pv' =viq. (12)

Proof. By the C*-identity, we have
v =w[? = [v(d = vV)|* = [[(1 = vV = vV = [[(1=p)p(1—p)|| =0,
hence v = v*v. Taking the transpose shows v* = v*vv*, so that we have established

(12). q is a projection because it is self-adjoint and g* = w*w* = w* = ¢, using
(12). O
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Definition 2.3 (Equivalence of projections). Let A be a C*-algebra and let p,q € A be
projections.

(@) p, q are called Murray-von-Neumann equivalent, denoted p ~ q, if there exists a
partial isometry v € A such that v*v = p and vww* = q.

(b) p, q are called unitarily equivalent, denoted p ~, q, if there exists a unitary u € A
such that q = upu*.

(c) p, q are called homotopy equivalent, denoted p ~y, q, if there exists a continuous path
(Pt)teio,1) of projections in A, such that py = p, p1 = q. Such a path is called homotopy
between p and q.

Lemma 2.4. All the relations in Def. 2.3 are equivalence relations on the set of projec-
tions in A.

Proof. The only non-trivial part is the transitivity of Murray-von-Neumann equiva-
lence. Let p, q,T € A be three projections, and let v,w € A be partial isometries with
Vv =p, w" = q, w'w = q, ww* = 1. Then

(Wv)*(Wv) = v'w wy = viqv = viw'y = p? = p,

(Wv)(wv)* = ww'w = WqW* = wwww* =12 =1,

O

Lemma 2.5. Let A be a C*-algebra and let p and q be projections in A with |[p — q| <
1/2. Then there exists a unitary u € A with q = upu*.

Proof. Seta=qp+(1—q)(1—p) € A. Tt satisfies

qa = qp = ap. (13)

Because

1—all=llg+p—2qp[=[1-qllp—a)—qlp—aq) <2[p—dqll <1,

the element a is invertible, with a™' =} *° /(1—a)™ (Neumann series), and from (13)

follows q = apa™ .
To obtain a unitary u with q = upu*, we take the unitary u = ala|™' from the polar
decomposition of a, see Corollary 1.31 (remember that |a| = (a*a)'/?).

We claim that p commutes with |a|~'. First, p commutes with |a|* because of the
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calculation
lal*p = a*ap = a*qa = (qa)*a = (ap)*a = pa*a = plal?,

where we used (13). We conclude that it commutes with all elements of the C*-
subalgebra B C A generated by |al* and 1. Since |al* is invertible, B contains |a|™,
proving the claim.

Using (13) again, we calculate

upu® = ala/ 'pu* = aplal 'u* = qala]'u* = quu* = q.

O

Proposition 2.6 (Equivalence of equivalences). Let A be a C*-algebra and let p, q be
projections in A. Then

@pPp~ngdq=pP~gq
) p~vg=7p~q;

() p~q= (B g) g <g 8) in M,(A);

(d) P~ q= (g g) - (g 8) in My (A).

Proof. (a) Let (pt)icp,) be a homotopy between p and q and choose a subdivision
0=t <t <+ <t, =1suchthat |p, —py,|| < 1/2foralli=1,...,n. By
Lemma 2.5, there exist unitaries u; in A such that Pt = Wipy_,ui for each i, hence
with u = u, ---w, we have p; = upou’.

(b) If ¢ = upu* for some unitary u € A, then with v = up, we have v*v = pu*up =
p? =p and W* = up’u* = upu* = q.

(c) Let v € A be a partial isometry with v*v = p, vw* = q. We need to find an element

u € M;(A) with udiag(p,0)u* = diag(q,0). To this end, define elements of M,(A)

by
(v 1—g¢ (a9 1—gq
wi= (1—]3 v ), S = (1_q q )

Clearly, s is unitary. Moroever,

W — Vv + (1—p)? v —vig+vi—pv\ (1 0
T \v—qv+v—wp (1—q)?+w* —\0 1)°

where we used the identities (12). Similarly, one calculates ww* = diag(1,1), hence
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u is unitary. Also

p O\ . pv: 0\ _ (vpv® 0\ (w*q 0\ (q O
W(o o)w_“’(o o)_(o o)_(o 0) ~\o o)’
again using (12). However, if A is non-unital, we generally have w ¢ M,(A). To

repair this, set u = sw and notice that also udiag(p,0)u* = diag(q,0) and since
A C Ais anideal,

e (VA =q)d=p) (1—g}V YR7Y
LL_SW_((1—c|)v+c|(1—p) 1—q+qV*)€M2(A)’

(d) Letu € A be a unitary such that ¢ = upu*. For t € [0, 1], define elements of
M;(A) by

- (Zlor? ((%3 Ccs)lsn(g-[?tz))) , Wy = (15 1) Tt (L(L) 1) Tt’ pt = Wy (g O) Wt.

Then (wy)iep,1) is a path of unitaries in M, (A) with wy = diag(1,1), w; = diag(u, u*)
and (pi)icp, is a path of projections in M,(A) with py = diag(p,0) and p; =
diag(q,0).

=3

O

2.2 The Grothendieck construction

Remember that a semigroup is a non-empty set S together withamap SxS — S, (g,h) —
g - h, that satisfies (g- h) - k=g - (h-k) for all g, h, k € S (associativity). A semigroup S
is abelian if the multiplication is commutative, g- h = h - g for all g,h € S. A homomor-
phism between semigroups S, T isamap ¢ : S — T such that ¢(gh) = ¢(g)¢(h) for all
g,h € S. Any group is in particular a semigroup.

Definition 2.7 (Group completion). Let S be an abelian semigroup. Then a group com-
pletion or Grothendieck group is an abelian group G(S), together with a homomorphism
ts : S — G(S) satisfying the following universal property: For every abelian group
H together with a homomorphism p : S — H, there is a unique homomorphism

0 : G(S) — H such that
\ o commutes.
0 !

24



Proposition 2.8 (Grothendieck construction). Let S be an abelian semigroup. Then a
group completion exists and is unique up to unique isomorphism. In fact, there exists
a functor G from abelian semigroups to abelian groups such that for every semigroup
S, G(S) is a group completion of S.

Proof sketch. A concrete model is G(S) := S x S/ =, where the equivalence relation ~
is defined by (g, h) ~ (g’, ') if there exists k € S such that g+h'+k = g’ + h+k (the
additional k is needed to show transitivity of the relation, in case that S does not have
the cancellation property g+k = h+k = g = h). One then shows that G(S) is a group
and sets 1s(g) = [g + k, k] for any k € S (any choice of k yields the same element).
To show the universal property, observe that for any g,h € S, [g,h] = 15(g) — s(h),
hence for a given homomorphism p : S — H, we must have p([g, hl) = p(g) — p(h);
this indeed gives a well-defined group homomorphism p : G(S) — H.

If now @ : S — T is a homomorphism of semigroups, then p := iy o ¢ is homo-
morphism S to the group G(T), so by the universal property, there exists a unique
group homomorphism G(¢) :=p: G(S) — G(T). One then verifies that for a second
homomorphism 1 : T — U, one has the functoriality G(1{) o G(¢) = G( o @). O

Remark 2.9. By the above, elements of G(S) can be represented by equivalence classes
of pairs of elements in S. We suggestively write g — h := [g, h] for g,h € S.

Remark 2.10. By the universal property of the Grothendieck construction, for any
abelian semigroup S and any abelian group H, the canonical map

Homay(G(S), H) — Homsap(S, H), @ @ols

is a bijection. Since it is natural in both S and H, this shows that the functor G : SAb —
Ab is left adjoint to the forgetful functor Ab — SAb.

Example 2.11. We have G(N) = Z; in fact the left hand side can be taken as a definition
of Z.

Example 2.12. If we setn 4 0o = 0o +n = oo for n € N and oo + oo = oo, then N U {oco}
is a semigroup. Moreover, G(N U {oo}) = {0}, because in groups, the cancellation rule
holds, that is, [n] + [oo] = [oo] implies [n] = [0] for all n € N U {co}.
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2.3 Definition of K

We have canonical embeddings M,,(A) — M,.;(A) given by

a Ain 0

a0 Qi _H ) 1 .
— ] (14)

a a any - Onn 0

nl nn O O O

We denote by M, (A) the union of all the M, (A), that is, the direct limit in the cate-
gory of x-algebra. M (A) can be described as the x-algebra of infinite matrices with
entries in A, with only finitely many non-zero entries. Since all the inclusions M, (A) —
Mn11(A) are isometric, M (A) inherits a norm which satisfies the C*-property but is
not complete.

Definition 2.13. Let A be a C*-algebra.

(a) Two projections p, q € M (A) are equivalent, if for somen € N, p,q € M, (A) and
P ~ q in M, (A). The set of equivalence classes is denoted by V(A).

(b) If p,q € M (A) are projections with p € M,(A), g € M;,,(A), we define

[p] + [q] := [diag(p, q)],  where diag(p,q) € Mnim(A) C Mo(A).

To show well-definedness of the addition, notice that for all p € M,,(A), @ € M. (A),
p p

0 ~ q in Moo (A).
Remark 2.14. By Prop. 2.6, we can use any of the equivalence relations ~, ~,, ~, to
obtain the same set V(A).

Lemma 2.15. Let A be a C*-algebra. Then V(A) is an abelian semigroup.

Proof. Let p,q,7 € My (A) be projections with p € M,(A), q € M,(A) and
v € M(A). Because of diag(diag(p,q),r) = diag(p,q,r) = diag(p,diag(q,r)) in
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Miim+1(A), the semigroup operation is associative. With

v—(p O)’ we have vv—<o q>, A% _(O p)’

hence v is a partial isometry and diag(p, q) ~ diag(q, p) in My, (A). This shows that
the semigroup operation is commutative. H

If A and B are C*-algebras and ® : A — B a *-homomorphism, one easily checks that
V(D) :V(A) — V(B), [p] — [D(p)]

gives a well-defined homomorphism of semigroups. If C is another C*-algebra and
Y :B — Cis a *-homomorphism, one clearly has V(¥) o V(®) = V(¥ o @), hence Vis a
well-defined functor from C*-algebras to abelian semigroups.

Definition 2.16 (The Ko-functor). Let A be a C*-algebra.

(@) The group Ky(A) associated to A is defined by

Ko(A) :=ker(GV(ea) : GV(AT) — GV(C)).

(b) Given another C*-algebra B with a *-homomorphism @ : A — B, define K,(®) :
Ko(A) — Ko(B) as the unique group homomorphism fitting in the commutative
diagram

Ko(A) —— GV(AT) —2) . Gy(C)

Ko(cb)l GV((D*)l H (15)

€

Notice that for C*-algebras A, B and *-homomorphisms @ : A — B, there is indeed
a unique group homomorphism Ky(®) : Ko(A) — Ko(B) making (16) commute: By
injectivity of the inclusions Ko(A) < GV(A*) and Ko(B) — GV(B™"), Ko(®) must be the
restriction of GV(®*) to Ky(A), and if x € Ky(A), then

0= GV(ea)(x) = GV(eg) GV(D)(x),
hence indeed GV(®")(x) € ker GV(eg) = Ky(B).

Remark 2.17. If A is unital, then A" = A & C with e being the projection onto the
second factor. Therefore, GV(A") = GV(A) & GV(C) with GV(ea) being the pro-
jection onto the second factor. If ® : A — B is a unital *-homomorphism, then
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GV(®") = GV(®) & GV(idc) under this identification, hence on the subcategory of
unital C*-algebras and unital *-homomorphisms, the functors GV and K, are naturally
isomorphic. We will therefore often write K, instead of GV for unital C*-algebras. In
particular, for any C*-algebra A, we have a short exact sequence

Ko(ea)
—

0 —— Ko(A) e KO(A+) Ko(C) — 0

Lemma 2.18. K is a functor from C*-algebras to abelian groups.

Proof. Let A, B and C be C*-algebras and ® : A — B, ¥ : B — C be *
homomorphisms. Consider the following diagram.

Ko(A) — GV(AT) —2N)  Gy(C)
Ko(®D) GV (Yo®) GV(DT)
Ko(Wo®) Ko\(,B) GV(B*) —< GV(©) (16)
Ko (D) GV(®™)

Ko(€C) ——— GV(CT) ——— o GV(C)
oléc
Commutativity of the left-most triangle is equivalent to the desired equality K, (V) o
Ko(®) = Ko(W o ®@). All squares commute by definition of the K, maps, while com-
mutativity of the other triangle follows from functoriality of GV. In total, we obtain
that the entire diagram commutes. O

Proposition 2.19 (A portrait of K). Let A be a C*-algebra.

(@) Any element x € Ky(A) can be written in the form x = [p] — [1,,] for some n € N,
with a projection p € M (A™) and

1
L= = € Moo (A™).
0
Moreover, we can arrange p such that p —1,, € M (A).

(b) For projections p,q € M« (A"), [p] — [q] = 0in Ky(A) if and only if there exists
m € N such that diag(p, 1,,) ~ diag(q, 1,,). Here ~ can be replaced by ~, or ~.

(c) If B is another C*-algebra and ® : A — B is a homomorphism, then for all projec-
tions p, g € M, (A), we have Ko(®@)([p] — [q]) = [@F(p)] — [@*(q)].
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Proof. (a), first part. By definition of the Grothendieck group, any element x € K,(A)
can be written as x = [p] — [q] with projections p, q € M (A") for some n € N. Since
q is a projection, so is 1, — g, and

gl + 1, —ql = Kg 1 O_q” = [1.],

as

q 0 . (1, O : _ q 1.—q¢q
u(o 1n_q)u _(O O) for the unitary u-(ln_q q )

Therefore, if p € M, (A*) and g € M, (A7),

[Pl — [q] = [p] + [ — gl — (Iq] + [ — ql) = [(g ) O_qﬂ ),

as claimed.

(b) Suppose that [p] — [q] = 0 in Ko(A) for projections p,q € M,(A"). By the
definition of the Grothendieck group, this implies that there exists a projection
r € My(A") C Mqy(A) such that diag(p,r) ~ diag(q,r). We then also have
diag(p,r,1, — 1) ~ diag(q,r,1, — v). But by a similar calculation to the one just
above, we have diag(p,r,1, — 1) ~ diag(p,1.) and diag(q,r,1, — 1) ~ diag(q,1,).
Conversely, if diag(p, ) ~ diag(q, 1), then

[pl = [q] = ([p] + [r]) — ([q] + [t]) = KE S)} B Kg S)} =0

(a), second part. Let x = [p] — [1,] € Ky(A), where p € M (A™) is a projection.
Since x € kerKo(ea), we have [ea(p)] — [1.] = 0. By (b), there exists m € N with
P € My (A") and a unitary u € M;,(C) € M, (A") such that ue,(p)u* = 1,. Then
with the projection p’ = upu*, we still have x = [p’] — [1,,], but ea(p’) — 1, = 0, hence
P —1, € M, (A).

(c) This follows from the universal property of the Grothendieck group, compare the
proof sketch of Prop. 2.8. O

Example 2.20 (K, of C). Two projections p,q € M,(C) are equivalent if and only if
they have the same rank, and the rank is additive under taking direct sums. Therefore
V(C) = Ny and Ky (C) = Z (see Example 2.11). We conclude that the map

T:Ko(C) — Z, [pl — [q] — tr(p) — tr(q) (17)

is a well-defined group isomorphism.
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Example 2.21 (K, of B(H)). Let H be a Hilbert space and A = B(H). Two projections in
M, (A) = B(H") are equivalent if and only if they have the same rank, and the rank is
additive under taking direct sums. Here the rank can be any number in Ny U {oo}, and
the Grothendieck group of this semigroup is zero (Example 2.12).

2.4 Homotopy invariance

Definition 2.22 (Homotopy). Let A and B be C*-algebras.

(@) A homotopy between x-homomorphisms @,V : A — B is a family (®¢)cp,1 of *-
homomorphisms such that ®y = @, ®; =¥ and such that t — ®(a) is continuous
for every a € A.

(b) Two *-homomorphisms @,V : A — B are called homotopic if there exists a homo-
topy between them.

(c) A *-homomorphism ® : A — B is a homotopy equivalence if there exists a *-
homomorphism @’ : B — A such that both ® o ®" and @’ o ® are homotopic to
the identity.

Example 2.23. If X, Y are compact topological spaces, then a continuousmap ¢ : X = Y
induces a s-homomorphism ¢* : C(Y) — C(X), f — ¢*f by pullback. If ¢ and ¥
are two such maps, then a homotopy (of continuous maps) induces a homotopy of *-
homomorphisms between ¢* and 1*, and if ¢ is a homotopy equivalence (in the sense
of topology), then ¢* is a homotopy equivalence in the sense of Def. 2.22.

Theorem 2.24 (Homotopy invariance). Let A and B be C*-algebras.
(a) If ®,¥: A — B are homotopic *-homomorphisms, then Ko(®@) = Ko (V).

(b) If ® : A — B is a homotopy equivalence, then Ky(®@) : Ky(A) — Ko(B) is an
isomorphism.
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Proof. (a) Let (®y)cpo,1) be a homotopy between @ and V. Let x = [p] — [q] € K(A)
with p,q € My(A). Then (Of (p))iep, and (O (q))iep,) are homotopies of projec-
tions between ®*(p) and W* (p), respectively ®*(q), ¥*(q). Hence by Prop. 2.19(c),

Ko(@)(x) = [@7 (p)] — [@T(q)] = ¥ (p)] — [¥"(q)] = Ko(¥)(x).

(b) If ® : A — B is a homotopy equivalence with homotopy inverse @', then by
functoriality of K, and the results of (a),

idk,(a) = Ko(ida) = Ko(D') 0 Ko(D) and idy, ) = Ko(idg) = Ko(®@) o Ko(D').

Hence Ky(®) and K (®’) must be isomorphisms. O

2.5 Continuity

Definition 2.25 (Directed set). A directed set is a set I with a partial order < such that
any two elements have a common upper bound. In other words, for all objects i,j € I,
there exists k € I such thati < kand j < k.

Example 2.26. Any subset S C R gives rise to a directed set with the usual order
relation. The same statement is true for S replaced by any totally ordered set. An
example for a directed set which does not come from a total order is the set of finite-
dimensional subspaces of a Hilbert space H, ordered by inclusion.

Definition 2.27 (Direct limits). Let C be a category and let I be a directed set.

(a) A direct system in C is a collection of objects c;, 1 € I, together with a collection of
morphisms @j; : ¢; — ¢; foralli,j € Iwithi <j, such that @y 0 @j; = @y whenever
i<j<k

(b) A cocone to a direct system {ci, @ji}1 in C is an object c of C together with a collection
of morphisms 1; : ¢; — c for each i € I, such that whenever i < j, the diagram

Ci

x
®ji C commutes.
G
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(c) A cocone {c,\i}; to a direct system {ci, @ji}; is called a direct limit or colimit, if it
satisfies the following universal property: For every other cocone c’, there exists a
unique morphism ¢ — ¢’ in C such that whenever i < j, the diagram

Ci i
\I
051 c ----- E R (18)
/Ij)j'
C. \—l/
) wj

commutes. The direct limit is denoted by h_n} ¢; or colim c;.

Remark 2.28. A directed set I gives rise to a category with objects the elements of I and
precisely one morphism i — j if i < j. From this point of view, a direct system in C is
just a functor I — C (i.e. a diagram in C), and the cocone and colimit coincide with the
corresponding notions in category theory.

Any directed set is in particular a filtered category. The latter is slightly more general
in that one drops the assumption that there is at most one morphism between any
two objects; instead one requires the existence of equalizers for each pair of parallel
morphisms &, «’ : i — j, i.e. a morphism 3 : j — k such that 3 o « = 3 o &’. All results
below are true with general filtered diagrams instead of directed sets, but it is usual in
this context (and slightly more convenient) to restrict to directed sets.

Example 2.29 (Direct limits of sets). In the category of sets, direct limits always exist.
If {ci, @ji}1 is a direct system of sets, a direct limit ¢ can be constructed explicitly by

c=gci/~ (19)

where for x € ¢, y € cj, we declare x ~ y if and only if there exist k € I such that
@xi(x) = @ij(x). The maps \; : ¢c; — c are just the obvious maps P;(x) = [x].

Example 2.30 (Filtered colimits of algebraic structures). If C is a category of algebraic
structures such as the category of semigroups, groups, algebras or *-algebras, direct
limits always exist. To realize the direct limit of a direct system {c;, @j};, use the con-
struction in Example 2.29 of the colimit c as a set and observe that one obtains induced
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algebraic structures on it in a (semi-)obvious way. For example, if each of the objects c;
is a semigroup, we obtain a well-defined multiplication on the set c defined in (19) by
defining [x] - [y] = [@wi(x) - @xj(y)] for x € ¢;, y € ¢j, where k € Iis such thati < k and
j <k.

Example 2.31 (Filtered colimits of C*-algebras). In the category of C*-algebras, direct
limits exist. To realize the direct limit of a direct system {A;, ®j;};, start with the colimit
A in the category of *-algebras (see Example 2.30), and define a seminorm on A as
follows. For [a] € A represented by a € A;, set

lal]l == inf{[|@5(a)|| | 1 <j}, (20)

where we take the infimum over all j € I with j > i. One checks that this seminorm
is independent of the choice of a. Since *-homomorphisms are always contractive by
Prop. 1.16, the seminorm is finite (for non-unital algebras, the same result is true, after
passing to the unitalization). It satisfies the C*-identity, as induced from that of the A;.
The completion of A with respect to this norm is the required direct limit (note that the
canonical map A — A is not necessarily injective as the seminorm may be degenerate).

Example 2.32. Let {A;, @;;}; be a direct system of C*-algebras with direct limit {A, W;};.
Then {M,(A), M, (¥;)} is the direct limit of the direct system {M,,(Ai), M,,(®Dj;)}; of
C*-algebras.

Lemma 2.33. Let A be a C*-algebra and a € A be self-adjoint with ||a’ — a|| < ¢ for
some ¢ < ;. Then there exists a projection p € A such that |ja — p|| < 2e.

Proof. Let B C A be the C*-subalgebra generated by a. Since a is self-adjoint, B is
commutative and by Thm. 1.30, B = C(o(a)). Let f(A) = A> — A. Then

e > [la® —af = [[f(a)]| = sup [f(A)].

Aeo(a)
Some analysis shows that (provided ¢ < ), we have [\ — A| < ¢ if and only if

A€ =8, 8lul1—5, 148,  with 5:%(1—\/@), 5':%(@—1).
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Notice that as functions of ¢, we have 6,8 < 2e whenever ¢ < J—l. We conclude that
o(a) C [-&,8]U[1—08,1+0], and thatif ¢ < }‘, then % ¢ o(a). Therefore, the function

O — {o ifA <

1 A satisfies sup [H(A) — Al < 2¢,

A€o(a)

TR STE

and is continuous on o(a), that is H € C(o(a)). Therefore the self-adjoint element
p = H(a) € A satisfies ||p — a|| < 2e and because H?> = H, p is a projection. O

Corollary 2.34. Let{A;, ®;i}; be a direct system of C*-algebras with direct limit {A, W;};.
For each projection p € A and any ¢ > 0, there exists i € I and a projection p; € A;
such that ||p —Vi(pi)|| < e.

Proof. By the explicit description of A (see Example 2.31), there exists a sequence
an € Aq,, n € Nsuch that ¥; (a,) — p in A. Since p is self-adjoint (after possibly
replacing a, by 1(a, + a};)) we may assume that a, is self-adjoint. As multiplication
in A is continuous, the sequence ¥;, (a,)* converges to p? in A. Therefore, given any
¢ > 0, we can choose n € N large enough so that both

£ £
Wi =pYl <5, and  [¥(a) —pl <.

Using that p = p? is a projection, we therefore get

2¢

Wi (@ — an)| < Wi, (an) = p*[| + Wi (an) =PIl < &

By the definition of the norm of A, there exists j > i, such that a := @y, (a,) € A;

also satisfies |[a’?—a|| < . Therefore by Lemma 2.33, there exists a projection p; € A;
such that [[a — p;|| < %. With this projection,

lp =¥ (p)|| < llp — ¥ @i, (an) || + [|¥j(a) — ¥(ps)l
e 4¢

< _Wi n —pjll < = = — ¢
<lp—¥ilanl+lla-pl < g+ % =¢

where we used that x-homomorphisms between C*-algebras are contractive
(Prop. 1.16). O

Proposition 2.35. If {A;, ®;i}; is a direct system of C*-algebras with direct limit {A, W},
then the collection {V(A;), V(®j;) }1 is a direct system of semigroups, and

V(A) =1i

lim V(A,).



Proof. We verify the universal property. To this end, let {S,1{;}; be a cocone to the
direct system of semigroups {V(A;), V(®j)}i. We have to show that there exists a
unique semigroup homomorphism x : V(A) — S such that x o V(¥;) = ; for all
iel

On elements x € V(A) of the form x = [¥;(pi)] for some projection p; € My, (A;), this
homomorphism must be given by

x(x) = x(¥i(p:)]) = x o V(¥i)([pi]) = Willpil). (21)

But by Corollary 2.34, any element x € V(A) is of this form: Indeed, if x = [p] for
some projection p € M,(A), then (since M,(A) = liL)nMn(Ai) by Example 2.32),
Corollary 2.34 provides the existence of a projection p; € My (A;) such that ||p —
Yi(pi)|| < 2_1' By Lemma 2.5 and Prop. 2.6, we therefore have p ~ Wi(p;), in other
words [p] = [Wi(pi)].

This shows that x is uniquely determined by (21), and it is compatible with the maps
V(¥;) and {; by construction. It is also easy to see that it is additive. It therefore
only remains show that x is indeed unambiguously defined by (21). In other words,
we have to show that if p; € M, (A;) and p; € M,,(A;) are two projections such that
[Wi(pi)] = [¥;(p;)], then Pi([pi]) = P;(lp;]).

Assume first that |[Wi(pi) — ¥j(p;)|| < 3. Then by the definition of the norm of the
direct limit M,,(A), there exists k > 1i,j such that also || Dy (pi) — Py (p;)]| < %, which
(again by Lemma 2.5 and Prop. 2.6) implies that ®y;(p;) ~ Oy;(p;), hence

Pi([pil) = i o V(Dyi([pil) = W ([Dui(pi)]) = Wk ([Dy(p;)]) = - - - = P;([Ips)).

In general, (after possibly increasing matrix dimensions), let (q¢)cpo,1) @ homotopy of
projections with qo = ¥i(pi) and q; = ¥j(p;). Choose a partition 0 =ty < t; < --- <
tn = 1 with [|qy, — ¢, , || < } and projections p;, € A, with ||, (pi,) — gy, || < 7; here
we let p;, = p; and pi, = p;. Now

1
||1‘yik (pik) _\Pikq (pikq ) “ < ||1‘yik (pik) — H + Hqtk — Qi H + Hqtk4 _lyikq (pik—1 )H < E

Hence by the previous step, 5, (pi, ) = Wi, , (pi,_,) forallk =1,...,n, which finishes
the proof. O

Theorem 2.36 (Continuity). K-theory commutes with direct limits. In other words, if
{Ai, @51} is a direct system of C*-algebras with direct limit {A, W;};, then the collection
{Ko(A4), Ko(Dj1)}1 is a direct system of groups, and

Ko(A) = Ko (mAi) = 11_) Ko(A4).
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Proof. By functoriality of Ky, {Ko(A1), Ko(®ji)} and {GV(AT), G \7(@;)}1 are direct sys-
tems of abelian groups. Moreover, we have the constant direct system {GV(C),id}
(of course, GV(C) = Z, but we don’t need this fact). Putting these together, we obtain
a short exact sequence of direct systems of abelian groups, i.e. for each i < j, we have
a commutative diagram

GV(ea.
0 — 5 KolA) ——— GVAT) 2 gy(ic) ——— 0
J/KO((D]'WL) lGV(‘D;) H
0 ——— Ko(A)) ——— GV(A]) 5 GV(C) —— 0.
€a;)

)

This is just the definition of K,; the compatibility of these diagrams for three indices
i <j < kis just its functoriality, see the proof of Lemma 2.18. It is now well-known
that such a short exact sequence of direct systems yields a short exact sequence of the
direct limits, that is, we get a short exact sequence

0 —— limKo(A;) — lim GV(A{) —— lim GV(C) —— 0 22)

The term on the right is just isomorphic GV(C), as the corresponding direct system is
constant. To identify the middle term, we use that both the unitalization functor and
the Grothendieck functor are left adjoints, as noted in Remark 1.21 and Remark 2.10,
and it is a standard fact from category theory that left adjoints commute with di-
rect limits. Moreover, the functor V commutes with direct limits by Prop. 2.35. We
conclude that

lim GV(A]) = GV(@AD = GV(A").

Put together, we obtain the commutative diagram

O—>h Ko —>11 GVA*)—>11 GV({C) —— 0

l H | ®

0 —— Ko(A) —— GV(AT) —— GV(C) —— 0

with exact rows. By the five lemma, the canonical map lim lim Ky(A;) — Ko(A) is an
isomorphism. O
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2.6 Stability

Proposition 2.37. Let {A;, ®j;}; be a direct system of C*-algebras with direct limit
{A,¥i}i. Suppose that each of the structure maps ®j; : A; — Aj is injective. Then
for any C*-algebras B, {A; ® B, ®j; ® idg}; is a direct system of C*-algebras with direct

Proof. To begin with, let A° = | J,.; ¥i(A;) be the direct limit of {A;, ®;;}; in the cate-
gory of x-algebras. We claim that A° ®,; B is dense in A ® B. Indeed, if a € A is the
limit of a sequence (a,)nen in A°, then for any b € B, a, ® b converges to a ® b in
A ® B, as by (8),

lan ®b—a®@b| = |[(an —a) @ b]| < [[an — al/[|b].

Hence the closure of A° ®,, B in A ® B contains A ®,, B, which is dense by the
definition of A ® B.

Clearly {A ® B, ®; ® idg}; is a cocone. To verify the universal property, let {C,Vi};
be another cocone; we have to define a *-homomorphism = : A° — B such that
ZoV¥; =V forallic I Clearly, on the subset A° ®,, B, Z must be given by

Z(Yi(a) ®b) =V¥i(a®b), foraeA;beB.

One easily verifies that this gives a well-defined *-homomorphism Z: A° ®,4,B — C,
which satisfies = o ¥; = V! by construction. We have to verify that = is continuous
with respect to the spatial norm. To this end, let x =} " | ¥; (a,) ® b, € A° ®,¢ B,

for a, € A;, and b, € B. Then there exists i €  withi > i, foralln = 1,...;m,
hence . .
x =Y 0i(@q,(an) @by = (¥ @ids) (Y i, (an) @ by ). (24)
n=I1 n=1

The fact about the spatial tensor product we use now is that since ¥; is assumed to
be injective, so is @; ® idg (Corollary 1.40). Therefore,

m m
120 = ’Wi(z Oy, (an) ® bn) ‘ < HZ Oy, (an) @ by || = [|x]]
n=I1 n=1
Here we used that x-homomorphisms are contractive (Prop. 1.16) together with (24)
and the fact that ®; ® idp is isometric (Corollary 1.32). O

Corollary 2.38. Let A be a C*-algebra. Then the completion of the infinite matrix alge-
bra M (A) with respect to the C*-norm induced by the inclusions M, (A) — M (A)
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is isomorphic to the spatial tensor product A ® K, where K is the algebra of compact
operators on an (infinite-dimensional) separable Hilbert space.

Proof. By Lemma 1.38, we have M,,(A) = A®M,,(C), and the embeddings M,,(A) —
M.(A) for m > n take the form ida ® Jmn, where Jin @ My (C) — M, (C) is the
canonical inclusion.

The limit of the direct system {M,,(C), J;un}n in the category of s-algebras is M, (C),
which can be identified with a dense subalgebra of F(H), the algebra of finite rank
operators on H = {*(N), and the induced norm is just the operator norm. Hence the
C*-algebraic direct limit is its closure, the space of compact operators,

lim M,,(C) = K(H).

The result now follows from Prop. 2.37. O

Theorem 2.39 (Stability). Let A be a C*-algebra. Then the inclusion C — K = K(H) as
rank one operators induces an isomorphism

Ko(A) = Ko (A ® K).

Proof. Consider the direct system {M,,(A), Jmn}n, With direct limit {A ® K(H), Jnjn
(Corollary 2.38). Therefore, by Continuity of Ko, Thm. 2.36,

lim Ko(Mn(A)) = Ko(A @ K(H)),

On the other hand, by construction of Ky, each of the maps Ko(Jmn) : Ko(Mp(A)) —
Ko(Mp(A)) are isomorphisms. Hence {M,,(A), Jmn)n is the constant direct system,
with each turn isomorphic to Ky(A) and the connecting maps the identity under this
identification. The result follows. O

3 The K-theory long exact sequence

Let A be a C*-algebra and ] C A a closed ideal, leading to the short exact sequence

0 y ] — A —"5 AJ] —— 0. (25)

In this section, we construct the long exact sequence of K-theory corresponding to this
short exact sequence. Throughout, we denote the projection map on the quotient by
m: A — A/] and the inclusion map of the ideal by t: ] — A.
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Notice that associated to the short exact sequence (25), we also have the short exact
sequences

0 —— Mp(]) —— My(A) —— My(A/]) —— 0
(26)

0 y ] ‘ At — 5 (A/)F —— 0

There are several further short exact sequences derived from this one, see §3.2.

3.1 Half-Exactness

Definition 3.1 (Homotopy of unitaries). Let A be a unital C*-algebra. Two unitaries
u,Vv € A are homotopic, denoted by u ~y, v, if there exists a continuous path of unitaries
(Wi)teo,1) such that uy = uwand u; =v.

Lemma 3.2 (Lifting unitaries). Let A be a unital C*-algebra and ] C A a closed ideal.
Then for any unitary u € A/J with u ~y, 1, there exists a unitary u € A with (1) = u
and u ~, 1in A.

Proof. First assume that ||[u — 1|| < 2. Then o(u) is contained in{A € C | A — 1] < 2}.
In particular, —1 ¢ o(u). On the other hand o(u) is contained in the unit circle, as u
is unitary. Therefore the complex logarithm (defined such that Loge™® = 10 for 6 €
(—m, 7)) is a continuous function on o(u). Hence we may define z := Log(u) € A/J.
z is skew-adjoint, since

z* = Log(u)* = Log(u*) = Log(u’1) = —Log(u) = —z.
Let z € A, be a lift of z (which exists by surjectivity of ). We may arrange z to be
skew-adjoint (by possibly replacing z by (z—z*)/2). Then 1 := exp(z) is the required
lift of u. It is connected to 1 by the continuous path (i)ic(,1) of unitaries given by

u, = exp(t Log(u)) (27)

For a general unitary u with u ~, 1, let (w)epo,1) be a continuous path of unitaries
with u; = uwand uy = 1,,. Choose a partition0 =ty < t; < --- < t, = 1 of [0, 1] such

that |luy, —u, || <2foreachi=1,...,n. Then [[u} ,u; —1,| < 2, hence there exist
lifts wy € A™ of uj, .. But then w; --- W, is a lift of u. Concatenating the paths (27)
gives a continuous path of unitaries from u to 1. O

Remark 3.3. Conversely, the above proof shows that any unitary u € A with [|[u—1| <
2 automatically satisfies u ~, 1, where the homotopy is implemented by the path (27)
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Corollary 3.4. For any unitary u € A/], the unitary diag(u,u*) € M;,(A/]) has a uni-
tary lift w € M,(A) with w ~, 15,.

Proof. As seen in part (d) of the proof of Prop. 2.6, we have diag(u,u*) ~, 1,,, hence
the statement follows from Lemma 3.2. O

Theorem 3.5 (Half-exactness). Let A be a C*-algebra and ] C A a closed ideal. Then
the sequence of groups

Ko (1) Ko (7r)

Ko(J) —— Ko(A) ——— Ko(A/])

is exact.

Proof. Clearly, if x € Ky(J), then by functoriality, Ko(7t) o Ko(1)(x) = Ko(rto t)(x) = 0.
Hence im Ky (1) C ker Ky(71).

Let now x € ker Ky(7) with Ky (71)(x) = 0. We have to show that x = K,(1)(y) for some
y € Ko(J). According to Prop. 2.19(a), there exist a projectionp € M (A*) andn € N
such that x = [p] — [1,] and p — 1, € M (A). Since Ko(7)(x) = 0, by Prop. 2.19(b), we
have diag(7" (p), 1x) ~u ok in M ((A/])7) for some k € N. Denote p’ := diag(p, 1x),
and for some m € N large enough, let u € M,,((A/])*) be a unitary such that

wrt)w =u (TP Y =t Mala/))

Let w € My, (A™) be a unitary lift of diag(u, u*), which exists by Corollary 3.4, and
set

q:=w (p O) w* € Mo (AT).

Then by construction, [q] — [1,.i] is another representative for x. On the other hand,
we have

=) (o) () = (7 o) = (" o),

so q — Lk € Mon(]) and g € My (JT). Therefore y := [q] — [T, € Ko(]) is an
element with Ky(1)(y) = x. O
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3.2 Cone and suspension

Definition 3.6 (Cone and suspension). Let A be a C*-algebra.
(@) The cone of A is the C*-algebra CA defined by

CA == [f € C([0,1],A) | £(0) = 0}

(b) The suspension of A is the C*-subalgebra SA C CA defined by

SA:={fe CA|f(1)=0.}

For x-homomorphisms @ : A — B, we define CO : CA — CB by O(f)(t) = O(f(t));
SO : SA — SB is defined by the same formula. It is then clear that both C and S are
functors sending C*-algebras to C*-algebras. It is straightforward to verify that both
are exact functors, that is, applying them to the short exact sequence (25), one obtains
short exact sequences

0 C] - CA —5 C(A/]) —— 0

(28)

0 S] —5 SA —" S(A/]) — 0.

Definition 3.7 (Mapping cone and cylinder). Let A, B be C*-algebrasandlet® : A — B
be a *-homomorphism.

(@) The mapping cone Cq of @ is defined as

Co ={(a,f) e A® CB|f(1) = ®(a)}.

(b) The mapping cylinder Zq of @ is defined as

Zp ={(a,f) € A C([0,1],B) [ f(0) = @(a)}

The mapping cone and mapping cylinders extend to functors from the category whose
objects are *-homomorphisms @ : A — B and whose morphisms are commutative
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diagrams

wAl l\vB (29)

to the category of C*-algebras. Namely, given such a commutative diagram, one ob-
tains a *-homomorphisms ¥ : Zo — Z¢r and ¥ : Co — Cqo by setting W(a,f) =
(Pa(a),¥gof) € A’ @ C([0,1],B’). It is easy to check functoriality with respect to
concatenation of diagrams (29).

Lemma 3.8. Let A be a C*-algebra.

(@) The mapping cone CA is contractible, that is, the inclusion @ : {0} — CA of the
trivial C*-algebra is a homotopy equivalence.

(b) For any *-homomorphism ® : A — B, projection onto the first component p; :
Zy — A is a homotopy equivalence.

Proof. (a) Let @' : CA — {0} be the trivial map (a *-homomorphism) and for t € [0, 1],
consider the *-homomorphism ®, : CA — CA, f — f, where f(s) = f(ts). Then for
any f € CA, t — ®(f) is a continuous map (by compactness of [0, 1]) hence (®)ico,1)
is a homotopy with @; = id and @y = ® o @'. It follows now from Thm. 2.24(b) that
Ko(CA) ={0}.

(b) We claim that a homotopy inverse is given by ¢ : A — Zg, a — (a,c,), where
cq € C([0,1],B) is the function with ¢, (t) = ®(a) for all t € [0, 1]: First, p; o ¢ = ida.
On the other hand, consider the family of *-automorphisms ¥, s € [0, 1], of Z¢ given
by ¥ (a,f) := (a,fs), where for f € C([0, 1], B), the function f; € C([0, 1], B) is given

by
fL(t) = {f(t—s) s<t
f(1) s>t

Then ¥; = c o py, while ¥y = ids. Hence also ¢ o p; is homotopic to the identity. [

3.3 The long exact sequence

Lemma 3.9. Let A be a C*-algebra, ] C A be a closed ideal and suppose that A/]J is
contractible. Then Ky (t) : Ko(J) — Ko(A) is an isomorphism.
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Proof. First, notice that Ky(t) is surjective by half-exactness of K, (Thm. 3.5), because
Ko(A/]) = {0} by contractibility of A /] and homotopy invariance of K, (Thm. 2.24).
To show injectivity of Ky(t), we use the mapping cylinder Z,. Notice here that by
Lemma 3.8(b), the projection map p; : Z, — J, (a,f) — ais a homotopy equivalence
and hence Ko(p1) : Ko(Z,) — Ko(]) is an isomorphism (Thm. 2.24).

On the other hand, Z, admits a surjective *-homomorphism ¢ : Z, — C to the map-
ping cone of 7, given by ((a,f) = (f(1),7 o f), with ker(¢) = CJ. Consider the
following commutative diagram with exact rows and colums, where i and p are the
obvious inclusion and projection maps, in view of C, C A & C(A/]).

Since CJ is contractible by Lemma 3.8(a) and S(A/]) is contractible by assump-
tion, the homomorphisms Ky(¢) and Ko(p) are injective, again by half-exactness
and homotopy invariance of K, (Thms 3.5 & 2.24). This shows that Ky(1) =
Ko(p)Ko(Q)Ko(p1)~' is injective as well. O

Theorem 3.10 (Long exact sequence). Let A be a C*-algebra and let ] C A be a closed
ideal. Then there exists a boundary map & : Ko(S(A/])) — Ko(J) such that we have an
exact sequence of groups

Ko(S(A/])) +——— Ko(SA) +—— Ko(S])
zi (30)

Ko(J) ———— Ko(A) ——— Ko(A/]).

Moreover, the map is functorial with respect to the short exact sequence, i.e. if O :
A — A’ is a x-homomorphism taking | to a closed ideal ] C A’, then we obtain a
commutative diagram

Ko(S(A/])) —— Ko(])

! |

Ko(S(A'/T)) ——— KolJ').
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Proof. We will use the short exact sequences

00— S(A)]) —— Cr —>—— A

~
o

(31)
0 » ] —— Co —— C(A/]) —

involving the mapping cone C; of m: A — A/]. Again, all maps involved are just the
obvious inclusion and projection maps coming from viewing C, C A @& C(A/]).

Definition of the boundary map: This is done with the diagram

(Sm)

Ko(SA_) Ko KO(L)

Ko(S(A/])) ~= R > Ko(J) === Ko(A).
= (32)
KO ( CTE)
Since C(A/]) is contractible by Lemma 3.8(a), Lemma 3.9 implies that the map K (j) is
an isomorphism. Therefore, we can define § = —K;(j)'Kq(1). Naturality of & follows

from the functoriality of the cone construction. It is left to verify exactness of the top
row of this diagram.

Exactness at Ko(]): We have the commutative diagram

Ko (p)

Ko(S(A/T)) — Ko(Cr) =2 Ko(A)
| e
Ko(S(A/])) —— KolJ) —— Ko(A).

The top row is exact (in the middle) by half-exactness of K,, Thm. 3.5, applied to the
first short exact sequence in (31). Since Ky(j) is an isomorphism, this implies that also
the bottom row is exact.

Exactness at Ko(S(A/])): At this point we know that for any C*-algebra A; with a
closed ideal J; C A;, the sequence

Ko(uy

Ko(S(A1/T1) — Kol(1) 2% Ko(A1) 227 Ko(Ar/Th) (33)

is exact. The trick is to apply this to the first exact sequence in (31), that is, we set
Ji .= S(A/]) and A; := C,, with maps ; = i, m = p, which then gives A;/]; = A
Substituting these definitions in (33), we obtain that the top row of the diagram

A) =2 Ko(SIA/T)) — Ko(Cr) —27% Ko (A)

| I

Ko(SA) —> Ko(S(A/])) — Ko(]) W Ko(A)
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is exact. We have seen that the two squares on the right hand side commute; since
both Ky (j) and Ko(o) are isomorphisms, the exactness of the top row implies that of
the bottom row, provided that we can verify that the left-most square commutes as
well, that is, 6; = Ko(Sm).

To see this, we need to look more closely at the derived short exact sequences (31) for
our new exact sequence (33). These are

0 > SA
(35)

and 0 —— S(A/]) — Cy, s CA s 0,

involving the mapping cone Cy, of m; : C; — A. Since 7 is just the projection onto
the first factor of C; C A @ C(A/]), upon going through the definitions, one finds
that the mapping cone can be identified with

Cr, ={(g,f) € C(A/]) & CA | g(1) = n(f(1))},

in such a way that the maps i; and j; in (35) are just the obvious inclusion maps
under this identification. Since &; = —K,(j1)'Ko(i1), we have

&1 = Ko(Sm) = —Ko(i1) = Ko(j1 0 Smr).

The idea is therefore to construct a homotopy between the x-homomorphisms 1; and
j1 o Smt from SA to Cg,. Going through the definition, one finds

4 (f) = (0, f), (j1 o Sm)(f) = (7o f,0).

Consider now the collection (@ )¢, of *-homomorphisms @, : SA — C,, given by

FEAD () = {0 te [0,1—s]

O (f) = (FFM,£5%),  with mf(2—t—s)) tell—s1]
FEA (1) = {O telo,
f(t—s) tels, 1.

It is a homotopy with @y = i; and ®; = j; o Smo 0, where o0 : SA — SA is the
x-automorphism defined by o(f)(t) = f(1 —t). By homotopy invariance (Thm. 2.24),
we therefore have Ky(i;) = Ko(ji o S7) o Ky(0), or equivalently &; = —K,(S7t) o Ko(0).
To finish the proof, one could now show that Ky(o) = —idk,sa), which is not too
hard. However this is not necessary: Instead, one can observe that so far, we have
shown that the diagram (34) commutes if one replaces the left-most identity arrow
by the automorphism —Ky(o). But also for this new diagram, exactness of the top
row implies that of the bottom row. O
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Corollary 3.11 (Split-exactness). Let A be a C*-algebra with a closed ideal ] C A such
that the short exact sequence (25) splits, that is, there exists a *-homomorphism s :
A/] — A such that mos =ida,;. Then

Ko(A) = Ko(]) & Ko(A/]).

Proof. The splitting map s provides a group homomorphism Ky(s) : Ko(J) — Ko(A)
such that Ko(7)Ko(s) = idk,(a/p). This shows that Ky(7t) must be surjective. Taking
suspensions, we obtain that also Ky(S7) is surjective, hence by exactness, 6 = 0.
Therefore K () is injective. Therefore, we obtain a split exact short exact sequence

Ko (V) Ko (7)
0 —— Ko(J) —— Ko(A) —ﬁ Ko(A/]) — 0.
ols

As we are in the category of abelian groups, this implies that Ky(t) & Ko(s) : Ko(]) &
Ko(A/]) — Ko(A) is an isomorphism. H

Remark 3.12. Of course, if A is isomorphic to ] A/] as a C*-algebra, such that L and 7
are just the inclusion respectively the projection map under this identification, then the
result follows directly from the definition of K,. However, the existence of a splitting
s:A/] = A doesnotimply A = J@A/] as C*-algebras. For example, if A is non-unital,
then usually A* is not isomorphic to the direct sum A & C. However, Corollary 3.11
implies that we always have

Ko(A™) = Ko(A) @ Z. (36)

To obtain a formula for the boundary map, we need the following lemma.

Lemma 3.13. Let A be a C*-algebra and let f € M,,,(CA™) be a projection with f(0) =
1,, where n < m. Then there exists a unitary u € M,,((CA)") with u(0) = 1,, such
that f(t) = u(t)Lu(t)*.

Proof. We have f ~; 1,, as the path f; defined by f,(t) = f(st) is a homotopy.
By Prop. 2.6(a), this implies f ~, 1,. This implies the existence of a unitary
u € M, ((CA)*) such that f(t) = u/(t)1,u/(t)* for t € [0,1]. For t = 0, this implies
1, = u/(0)1,u(0), hence u'(0) = diag(v,w) for unitariesv € M,(A), w € M;,_n(A)
(see Lemma 5.7 below). Therefore u(t) = u'(t)u/(0)* also satisfies f(t) = u(t)1,u(t)*,
and u(0) = 1,,. O
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Proposition 3.14. Let A be a C*-algebra and let ] C A be a closed ideal. Then the
boundary map in the long exact sequence (30) has the following explicit formula: Rep-
resent x € Ko(S(A/])) as x = [f] — [1.], where f € M,(S(A/])"), m > n such that

f —1, € M, (S(A/])), and choose a projection f e M. ((CA)*"), f(0) = 1, such that

7wt (f(t)) = f(t) for all t € [0, 1]. Then

5(x) = [f(1)] — [f(0)]. (37)

Proof. To see the existence of a lift, consider f as a projection in the larger space
Mo (C(A/])"). Then by Lemma 3.13, there exists a unitary w € M,,(C(A/])") with
u(0) = 1,, such that f = ul,u*. We have u ~, 1,, since the family of paths (u)sejo,1
defined by u,(t) = u(st) provides a homotopy; hence by Lemma 3.2, there exists
a unitary lift u € M,,(CA™) of u, which automatically satisfies u(0) = 1,,. Then f

defined by f(t) := u(t)1,u(t)* is the desired lift of f.

We have f(1) € M,(J1), as

e (F(1)) = 7 (@)L (@) = u(1)1au(1)* = (1) = 1.

In particular, since f(0) = 1,, this implies f(1) — f(0) € M, (]), hence [f(1)] — [f(0)] is
a well-defined element of Ky(J).
Since 6 ~is defingd by § = —Ko(j) ' oKo(1), in order to see the formula (37), we compare

Ko(G)([f(1)] — [£(0)]) with Ky(1)(x) in Ko(Cr). Remember that the mapsj: ] — C, and
i:S(A/]) = Crare given by j(a) = (a,0), respectively i(f) = (0, f). Therefore,
) =5(F— 1)+ (1n) = (F(1) = 10, 0) + (L, 1n) = (F(1), 1),

where we use that (1, 1) is the unit of (CA)*. We therefore have

Ko(G)(IF(D)] = [F(0)]) = [(f(1),1,)] — [((0), 1,)].
On the other hand,

We have to show that these elements are add to zero in Ky(C,). This follows from the
calculation

_ [ (f1) o) (1. ©
[(f(1),1n)]+[(1mf)]—[(( 0 1n>’(o f))}

(¢ 2) (o w))




where we have to justify the equalities (x) and (f). For (%), we use the homotopy
(qs)sep, of projections in M, (Cf), defined by

([t 0 1, 0\ . ~ (cos(Z) —sin (%)) .
o= () ) (6 9))s e (U8 )

observe here that due to the fact that f(1) = 1,,, each q, indeed defines a matrix with
values in the mapping cone C.

For the equality (1), consider the homotopy (ps)scjo,1) of projections in M, (C) given
by

ps = (f(1),mof),  with  fi(t) = f(st).

Then py = (1,,,1,,) and p; = (1?(1 ), f). Stabilising this, we obtain a homotopy imple-
menting (). O

4 Bott Periodicity

In this section, we prove the main result of operator K-theory, Bott periodicity. Through-
out this section, we identify S"C ® A = S™A, in view of Example 1.41.

4.1 The exterior product

Let A, B be two C*-algebras. If p € M,(A), ¢ € M;y(B) are projections, then their

~

tensor product p® q € M, (A) ® My (B) = Myn (A ® B) is again a projection. Applying
the V functor, we obtain a well-defined map

x : V(A) x V(B) — V(A @ B), (pl, [q]) — [p ® q, (38)

which is N-bilinear. Applying the Grothendieck construction, we obtain a Z-bilinear
product on the associated Grothendieck groups. On the category of unital C*-algebras,
where we can identify Ko = GV (see Remark 2.17), this gives a product map x : Ky(A) x
Ko(B) — Ko(A ® B). By construction, the map is natural in the sense that for any pair
of unital *-homomorphisms ® : A — A/, ¥ : B — B’, the diagram

Ko(A) x Ko(B) —— Ko(A ® B)
Ko((D)XKo(‘l’)l lKO((D@)\P) (39)
Ko(A") x Ko(B') — Ko(A’ ® B')

commutes.
To extend this construction to the non-unital case, we need the following lemma.
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Lemma 4.1. Let A, B be C*-algebras. Then we naturally have
Ko(AT ®@ BT) = Ko(A @ B) ® Ko(A) ® Ko(B) & Z.
Moreover, under this identification, we have

Ko(A ® B) = ker(Ko(ea @ idg+)) Nker(Ko(ida+ @ €3)) € Ko(A* @ BY).  (40)

Proof. This follows easily from split-exactness, Corollary 3.11, as we have the split
exact sequences

0 —+ A®BY — At @B 2A%wpr o

0 — 5 A®B — A@B+ %8 A y 0,
aswell as Ko(AT) = Ko(A) @ Z, Ko(BT) = Ko(B) & Z, see (36). O

Corollary 4.2. The product map defined above sends Ky(A) x Ko(B) C Ko(AT) x Ko(BT)
to K()(A ® B) C K()(A+ & B+)

Proof. If x € Ko(A) C Ko(A*) and y C Ko(B) C Ko(B"), then by the naturality prop-
erty (39),

Ko(ea ®idp+)(x X y) = Ko(ea)(x) x y =0,

Ko(ida+ @ eg)(x x y) =x x Ko(eg)(y) =0

From (40), it then follows that x x y € Ky(A ® B). O

We can now make the following definition.

Definition 4.3 (Exterior product). Let A and B be C*-algebras. The product
x 1 Ko(A) x Ko(B) — Ko(A @ B), (x,y) — x Xy, (41)

defined above is called the exterior product.

Lemma 4.4 (Properties of the exterior product). Let A, B be C*-algebras.

(a) The exterior product is natural, in the sense that for any pair of *-homomorphisms
®:A— A", ¥:B — B/, the diagram (39) commutes.
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(b) The class 1 € Z = Ky(C) is a two-sided unit for the exterior product, meaning that
under the canonical isomorphisms Ky(C ® A) = Ko(A) and Ko(A @ C) = Ky(A), the
elements 1 x x, respectively x x 1 are identified with x, for any x € Ky(A).

(c) The exterior product is commutative, in the sense that
x Xy = Ko(0)(y x x), (42)

for all x € Ky(A) and y € Ko(B), where 0 : A ® B — B ® A is the symmetry
isomorphism of the tensor product.

Proof. All of these properties are induced by the analogous properties of the product
(38), for which they are easily verified. O

4.2 The Toplitz exact sequence and the Bott element

Throughout this section, we denote K = K(¢*(N)), B = B(¢*(N)).

Definition 4.5 (Toeplitz algebra). The Toeplitz algebra T C B is the subalgebra generated
by the shift operator, explicitly

L on>2
(Sa), = o1 M= a € (N).
0 n=1,

Lemma 4.6. We have K C 7.

Proof. Let ey, ey,... be the canonical basis of ¢*(N). Then id — SS* = e; ® e}, the
projection onto the one-dimensional subspace spanned by e;. More generally, we
have e, ® e} = S™(id — SS*)(S*)" for any m,n € N. Taking the linear span of these
operators, we see that T contains all finite rank operators. But since by definition, 7 is
norm-closed, it must contain the closure of the finite rank operators, which is K. [

Proposition 4.7. We have o(S) =D :={A € C| |A| < 1} and 0e(S) = T.

Remember here that the essential spectrum is the set of number A € C such that A — S
is not a Fredholm operator (see Example 1.13). We use the following criterion.
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Lemma 4.8. Let H be a Hilbert space and T € B(H). Given A € C, assume that there
exists a sequence (v, )ney in H without accumulation point such that ||v,|| = 1 for each
n € Nand ||Tv, — Avy|| — 0. Then A € 0oss(T).

Proof. Let (vy)nen be a sequence with ||v,|| = 1 for eachn € Nand ||Tv,, — Av,|| — 0.
Suppose that A — T is a Fredholm operator. Then there exists S € B(H) such that
S(A—T) =idy + K, with K € K(H). Since K is compact and ||v,,|| = 1 for eachn € N,
the sequence (Kvy,)nen has an accumulation point w € H. On the other hand, we
have

Vn=S(A—T)v, — Kv,,.

Since S(A — T)v, converges to zero, after passing the a subsequence, the right hand
side converges to w. Therefore (v;,)nen has an accumulation point. O

Proof of Prop. 4.7. First of all, observe that since ||S|| = 1, we have o(S) C {A € C |
Al < 1}

For each A € C with [A] < 1, the sequence & with o, = A™ is contained in ¢?(N) and
satisfies S* o« = Ax. Hence A € ¢(S*) and A € o(S). On the other hand, since $*S = id,
the operator T := — Y >  A"(S*)™! satisfies (A — S)T = id and

TA=S) == A(S)MT 4+ 3 A"SS*(S*)" =id + (SS$* —id) ) A™(S*)™.
n=0 n=0 n=0

Since id — SS* € K, we see that T is a parametrix for S, so that S is Fredholm. We
conclude that A € 0 (T).

Let now A € C with |A| = 1. For m € N, define a sequence ™ € 2(N) by a =
A/ymifn <mand o =0 for n > m. Then ||«™|| = 1 and

(A S)a™ = 0 %fn<morn>m
A /mifn=m.

We obtain that || (A — S)a!™||? = 1/m, which converges to zero as m — co. Moreover,
since the sequence «!™ converges pointwise to zero, the only possible accumulation

point is zero; but this is impossible since ||«!™|| = 1 for all m € N. Hence «'™ has no
accumulation point. We conclude from Lemma 4.8 that A € 0es(S). O

Proposition 4.9. There exists a unique surjective *-homomorphism 7t : T — C(T) such
that 7t(S) = z, the identity function on T. Moreover, ker(7) = K, hence we have a short
exact sequence

0 y K —— T —"— C(T) —— 0. (43)
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Proof. Clearly, K is an ideal in 7. Consider the C*-algebra A := T/K. Since T is
generated by S, A is generated by [S]. As §*S = id and id — SS$* € K, [S] € T/K
is unitary, so A is commutative, and by Thm. 1.30, we have an isomorphism A =
C(o([S])) such that [S] — ids(s)).

It remains to show that o([S]) = T. By Prop. 1.29, the spectrum of [S] in A is the same
as the spectrum of [S] in the Calkin algebra B/K. Therefore, by Prop. 4.7 o([S]) =
Oess(S) = T (see Example 1.13). O

Indentify SC c C([0, 1]) with {f € C(T) | f(1) = 0} ¢ C(T) by sending e*™ to the
function z € C(T). Let Ty = ker(q), where q = ev; ot : T — C. Then the diagram

0 y K ——— T ~— SC > 0
[ | <44>
0 y K T = 5 C(T) —— 0

has exact rows.

Definition 4.10 (Bott element). A Bott element is an element b € Ky(S*C) such that
5(b) € Ko(K) is the class defined by a rank one projection, where § is the boundary
map to the upper row in (44).

Theorem 4.11. A Bott element exists.

Proof. We identify SC with {f € C(T) | f(1) = 0} C C(T) by sending the function
f(s) = €™ to the identity function z on C(T). Define a unitary up.: € My(S*CT) C
M, (SC(T)") by

= (53, (@) () @y
2 2

sin ()z  cos (%)

It satisties upo(0) = 1, upo(1) = diag(z, z), therefore

1 0\ .
PBott = UBott (0 O) WUpott (46)

is a projection in M, (S*C") with ppoy — 11 € M,(S*C). Hence b := [ppow] — [11] defines
an element of K,(S?C).
To calculate §(b), we use (37). The unitary U € M,(STy) = M;(ST) defined by

U(t) = (COS (%) —sin (%) $* ) ( cos (%) sin (%)

sin (%) S cos (%) SS* 4 (1—SS*) ) \—sin (%) cos(%))

52



is a lift of upy with U(0) = 1,. Hence

=[un 3 o] [ 9] -6 +30)]-[6 )0

Since 1 — SS* is a rank one projection in K, the result follows. O

We finish this section with the following lemma. which is needed in the next section.

Lemma 4.12. For any C*-algebra A, the rows of the commutative diagram

0 — KA 2% g 9A @9, ga

H ! !

0 — s KA 2% . g0A &%, c)gA — 0

o

are exact.

Proof. It suffices to consider the second sequence. By Corollary 1.40, the map t ® ida
is injective, hence we naturally have K ® A C T ® A. It is also straightforward to see
that K® A is an ideal in T® A. Because the relation (m®ida) o (t®ids) = 0 is still true
(since it holds on the dense subset K ®,; A C K ® A), we obtain a x-homomorphism

O:(ToA)/(KoA)— C(T)® A.

It is surjective, because the dense inclusion C(T) ®.3 A C C(T) ® A factors through
O:

C(T) Raig A = (T Quig A)/(K Qa5 A) —— (TR A)/(K@A) —2— C(T) @ A.

Since ¥ : C(T) ®ag A — (T®A)/(K®A) is an injective *-homomorphism with dense
image (also by the diagram above), it induces a C*-norm || - || on C(T) ®a4 A such
that the corresponding completion C(T) ®, A = (T® A)/(K® A). As seen, it comes
with surjective x-homomorphism C(T) @4 A — C(T) ® A, therefore || - || < || - ||«
There are several ways to see that || - ||« < || - ||s. For example, it is a fact that C(T)
is nuclear, meaning that all C*-norms on C(T) ®., A coincide. Another approach
uses the group C*-algebra C*(Z), which is the C*-subalgebra of B(¢*(Z)) generated by
the unilateral translation U, defined by (Ua), = o1 for & = (an)nez € C(Z). It
is commutative, and since o(U) = T, the Gelfand transform provides a canonical
isomorphism to C(T) (this is just the inverse discrete Fourier transform). Now there
is a contractive linear map

s:C(T)=C*(z) — T, f— Tp = VIV,

where f is the inverse Gelfand transform of f and V : {*(Z) — ¢*(N) is the orthogonal
projection. s is a section of 7, that is (7o s) = id¢(r).
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The map s is not a *-homomorphism (so the associated K-theory sequence does not
split), but is a completely positive map, meaning that for all n € N, the induced map on
matrices M, (s) maps positive elements to positive elements. In particular, tensoring
with idy provides a contraction s ® ida : C(T) ® A — T ® A (a general fact about
completely positive maps, which can also easily be seen from the concrete form of s).
We therefore obtain a contractive linear map

CMaA % Tg0A — 5 (TOA)/(K®A) = C(T) @, A.

Hence || - ||o < || - || and C(T) ®, A = C(T) ® A. O

Remark 4.13. Above, we have essentially proved the following general result for gen-
eral C*-algebras A, B and a closed ideal ] C A: Assume that there exists a completely
positive map s : A/] — A such that mo s = ida/j or that A/] is nuclear. Then the short
sequence

0 —— J®B ‘2% AgB ™% A/JeB —— 0

is exact.

4.3 The periodicity theorem

Throughout, let b € Ko(S*C) be the Bott element constructed in the proof of Thm. 4.11.
In fact, it will follows from Bott periodicity, Thm. 4.15 below, that the Bott element is
in fact unique; this is irrelevant for the proof of Bott periodicity, but justifies to refer to
“the” Bott element henceforth.

Definition 4.14 (Bott map). For any C*-algebra A the Bott map of A is the map
Ba 1 Ko(A) — Ko(S*C ® A) = Ko(S?A), x = b xx,
given by taking the exterior product with the Bott element.
It is clear from naturality of the exterior product, Lemma 4.4(a), that the Bott map is

natural, that is, for each *-homomorphism ® : A — B between C*-algebras A, B, we
have a commutative diagram

Ko(A) —2PL 5 Ko(B)

B/\J/ J/BB (47)

2 2
Ko(s A) m Ko(s B)
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In other words, the Bott maps assemble to a natural transformation 3 : Ko = KyS°.

Theorem 4.15 (Bott periodicity). For each C*-algebra A, the Bott map 3 is an isomor-
phism. In other words, the functors K, and K¢S? are naturally isomorphic.

The proof of Thm. 4.15 goes by constructing an inverse transformation o : KoS? — K.
This is done as follows: Tensoring the upper sequence of (44) with a given C*-algebra
A, we obtain the sequence

0 — 5 KA — To®A » SA 0. (48)

which is exact by Lemma 4.12. By Thm. 3.10, it therefore gives rise to a long exact
sequence in K-theory, the relevant part of which is

D Ko(S(To @A) —— Ko(SPA) —25 KoK @A) — Ko(To @A) — -

with 8, the corresponding differential. It is natural in A, as the differential depends
naturally on the exact sequence.

Let A : C — K be the inclusion as rank one operators, so that Ko(A ® ida) : Ko(A) —
Ko(K ® A) is an isomorphism by Thm. 2.39. We now define

(0.0, Ko(SzA) — Ko(A), by Xp = Ko()\ X idA)il ¢} 6A.

It is then clear that the maps x, assemble to a natural transformation of functors « :
KoS? = Ko. In other words, for any *-homomorphism @ : A — B between C*-algebras
A, B, the diagram

Ko(S2A) X282 1 (52B)

Ko(A) W Ko(B).

commutes.

Lemma 4.16. For any other C*-algebra B and x € K((S?A), y € Ko(B), we have

dagB(X ®Y) = aa(x) x y.

Proof. Observe that by the definition (32) we have 54 = K(j A)7" o Ko(ia), where ja :
K®A — Crgid, and ia : S(SCR®A) — Cprgiq, are the inclusion maps into the mapping
cone. Under the canonical isomorphisms Crgiq, = C,® A and S(SC®A) = S’CR A,
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these maps take the form jo = jc ® ida and iy = ic ® ida. We obtain that
aa = Ko(A ®@1ida) " Ko(je @ ida) " Kolic ® ida).
The statement now follows from the naturality (39) of the product. O

Proof of Thm. 4.15. We show that both oco 3 and 3 o  are the identity transformation.
First, the identity &y o B4 = id follows from the calculation

(a0 Ba)(x) = xa(b xx) =ac(b) xx =T xx=x,

for x € Ko(A), where we used property (2) and then property (1) of «.
Showing the identity 3o o aa = id is more involved. For any C*-algebra A, denote

by
oa:S’C® A = A® S*C, fear—axf

the “flip map”. Observe that for these maps, we have the identity
(ids2c ® 0A) 0 (052¢ ® idA) = Os2¢0en : SSCRS'CR®A — SPSCRA®S'C.  (49)
The important fact is now that
Ko(os2c ®ida) =id. (50)

on Ko($?C ® S°C ® A). To see this, identify S?C = Co((0,1)?) = Co(R?) and notice
that under this identification, os:¢(f) = Q*f, where Q is the linear map given by the
matrix

1

Q = 1
1

Since this is a determinant one orthogonal matrix, it can be connected to the identity
matrix by a continuous path (Qq)ep) in SO(4); then @(f) = Q;f, t € [0,1],is a
continuous family of *-homomorphisms with ®; = 0s2¢c, @9 = id. The claim now
follows from homotopy invariance, Thm. 2.24.

With these preparations, we calculate using that

x X b =Ko(0s2cea) (b X X) Lemma 4.4(c)
= Ko(ids2¢c ® 0a)Ko(0s2¢ ® ida)(b x x) (49) (51)
=Ko(S*0) (b x x). (50)

Here we used that ids:c ® 04 = S?04 under the identification S*’C ® A = S?A. Calcu-
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lating further, we get for any x € Ko(S*C @ A) = Ky(S?A) that

(Ko(oa) o Baoaa)(x) = Ko(oa)(b x xa(x))
= oa(x) x b
= Qpgps2c(x X b) Lemma 4.16(b)
= (oagsac © Ko(S?aa))(b x x) (51)
= (Ko(oa) 0 &s2cen) (b x x)  naturality of «
= Ko(oa)(x) « left inverse to 3

Because o, and hence Ky(o4) is an isomorphism, the result follows. O
Corollary 4.17. The Bott element is unique.

Proof. By Bott periodicity, the map Bec = Ko(A)™' o 8¢ : Ko(C) — Ko(S*C) is an
isomorphism, that is, Ko(S*C) = Ko(C) = Z. Since Ky(A) is an isomorphism,
8¢ : Ko(S*C) — Ko(K) is an isomorphism as well. Hence there exists a unique el-
ement b such that 6(b) corresponds to the element 1 € Z = Ky (K). O

5 The K;-functor and the six-term exact sequence

In this chapter, we finish our exposition of the K-theory of C*-algebras by introducing
the K;-functor, which gives important interpretation for the boundary maps in the K-
theory six-term sequence.

5.1 Definition of K;

Definition 5.1 (Unitary groups). Let A be a C*-algebra. For any n € N, write
UL (A) :={u € M,(A)" | uunitary and u =1, + a,a € M, (A)}.

Denote by U} (A)o C U} (A) the normal subgroup of those unitaries homotopic to 1,,.

There exist the obvious inclusion maps U}/ (A) — U, ;(A) given by

n-+1
ap - a0
an - Qin
—
Any - Qnn O
an] aTLTl O O 1
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By U (A), we denote the union of all the U} (A), that is, the direct limit with respect to
the above inclusion maps. We have U/ (A) C M (A)", which induces a topology on
UL (A).

Definition 5.2 (The K;-functor). Let A be a C*-algebra.

(a) We define
Ki(A) == UL (A) /UG (A)o.

(b) If B is another C*-algebra and @ : A — B is a *-homomorphism, we define

In total, K; is a functor from the category of C*-algebras to the category of groups.

Remark 5.3. If A is unital, then A" = A & C and the map u — (u — 1,, 1) provides
an isomorphism from the unitary group U, (A) to U (A). However, even in the unital
case, we need the groups U; (A) to deal with non-unital *-homomorphisms ® : A — B.
Namely, for u € M, (A) unitary, ®(u) is in general only a partial isometry, but ®* maps
UL (A) to UL (B).

Lemma 5.4. Let A be a C*-algebra. Elements x,y € K;(A) coincide if and only if there
exists n € N and a homotopy (u)icp,1j of unitaries u; € U (A) with x = [u,] and

y = [w].

Proof. First observe that two unitaries uy,u; € Ul (A) represent the same class in
Ki(A) if and only if they are homotopic: If they are homotopic, they are clearly in
the same connected component, that is, in the same coset of U} (A)y. Conversely,
elements in same connected component can be joined by a path of unitaries.

We now prove that one can restrict to homotopies that lie in some U} (A) through-
out. Clearly, homotopies in U; (A ) give rise to homotopies in U (A). Conversely, let
(Wt)tepo,1) be @ homotopy in UL (A). Choose a partition 0 =t < t; < -+ < t,, =1
such that ||luy, —uy_,|| < 2. Then the unitaries uy, all lie in some U (A), for some
m € N. But by remark Remark 3.3, since |ju;, —w,_,|| < 2 (this also holds within
Ut (A)), there exists a homotopy in U} between u, , and u,; concatenating these
homotopies gives a homotopy in U} (A) between uy and u;. O

Lemma 5.5. For any C*-algebra A, K;(A) is abelian. Moreover, if u € U} (A) and v €
U\ (A), then [uv] = [diag(u, V)] in K;(A).
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Proof. Let x,y € K;(A) and write x = [u], y = [w] with uyw € U;}(A). Define
elements in Uj_(A) by

. cos ()1, —sin(%)1, AT w 0 .,

T sin (B) 1, cos (B 1, ) W= o 1, Tl o 1, Te-
Notice that, while r, is not contained in Uj (A) but only in Uy,(A"), we never-
theless have w, € Uj, (A). Then (wi)icp, is a continuous path in Uj, (A) with
wy = diag(uw,1,) and w; = diag(u,w). Define a continuous path (W{)co,1 by
swapping the roles of u and w in the formula above, so that wj = diag(wu, 1) and
w) = diag(w,u). Finally, define a path (vi)icp,1j by

u 0\ .,
Vt:rt(o W)Tt.

Then (vi)iep) is a continuous path in Uj, (A) with vy = diag(u,w) and v; =
diag(w, u). Concatenating these paths appropriately gives a continuous path of uni-
taries in U3, (A) from diag(uv, 1,,) to diag(vu, 1,). This proves the claim. O

5.2 Identification with Suspension

Theorem 5.6. For any C*-algebra A, there exists a canonical isomorphism
Na : Ki(A) — Ko(SA)
such that for each *-homomorphism ® : A — B, the diagram

Ki(A) —12, ,(B)

ﬂAl lﬂs (52)

KQ(SA) W Ko(SB)

commutes. In other words, the maps na assemble to a natural isomorphism of functors
n: K = K()S

We will need the following lemma.

Lemma 5.7. Let A be a C*-algebra. Let m > n and let w € M;,(A) be unitary such that

W (1(; 8> W = (1(; 8) € My(My(A)) = Myy(A).
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Then there exist unitaries u,v € M, (A), such that w = diag(u,v).

()

with u, a,b,v € M,,(A). We have to show that a = b = 0. Since w is unitary,
1, 0\ ., [(u a)\(u" b in particular 1, =u'u+a‘a
0 1.) "™ T\b v)\a v particiia 1, =bb* +w*.

u a) (1, 0\ /u* b*\ (1, 0 ol 1, =u'u
b v 0 0/ \a* vv/ \0 O ples 0 = bb*.

Putting together, we get a*a = b*b = 0, hence a = b = 0 (this follows from the
C*-property, as ||a||* = ||a*a| = 0 and similarly for b). O

Proof. Let

But

Proof of Thm. 5.6. We will start with the definition of 1, then show injectivity and
surjectivity of na and then verify that the square (52) commutes.

Definition of na: For A a C*-algebra the map na : Ki(A) — Ky(SA) is defined as
follows. Given x € K;(A), write x = [u] with u € U} (A) and let (Wi)iep,1) be a
homotopy in U3, (A) with w; = diag(u, u*) and wy = 1,, (such a homotopy exists by
Corollary 3.4). Then set

na(x) := [f] — 1] € Ko(SA) with  f(t) = w, (1(;‘ g) wr.

Notice that indeed, f(t) is a projection for every t € [0,1] and f(0) = f(1) = 1,,, so
f e My, (SAT).

We have to check that n, is independent from the choice of representative in U} (A)
and the choice of homotopy (wi)iep,11, as well as the choice of n € N.

(1) Independence of n € N: Write

Wy = (at zz> sothat  f(t) = (atat gii) . (53)

Ct ceay

If we set u’ := diag(u, 1) for m € N, then (W})co,1) with

a 0 by O
, 10 1, 0
W= Ct 0 dt 0 (54)
O 0 0 1,
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is a homotopy of unitaries from diag(w’, (u')*) to 1yn42m, and the corresponding
path of projections is

1, 0 0 0O aa; 0 acy O aia; aic; O
v o1, o [ o 1, 0 o0 ctat dict 0
F=wilo 0 0 o™ = |ca 0 ae o 0 1,
0 0 00 0o 0 0 0 0 0
1, 0 0 aal ac; 0 0\ /1, O 0\"
o 0 1, 0| |car dct 0 O[O0 0 1, O
1o 1, 0 o 0 0 1, 0|0 1, 0 O
0 0 0 1, o 0 0 o/\o 0 0 1,
(55)

With a view on (53), this shows that f’ ~, diag(f,1,) for all t € [0, 1], hence

[f/] - [1n+m] - |:((§ 10 ):| - [1n+m] - [f] - [1n])
as desired.

(2) Independence of representative and homotopy: Let u' € UJ(A) with u' ~, u and
let (W})eo,1) be a homotopy in U;, (A) with w) = diag(w/, (W)*) and wy = 1,y.
We will show that the path of projections f'(t) = wj diag(1,,0)(w;)* is unitary
equivalent to the path f.

To this end, let (1)1 be @ homotopy in U (A) with uy = uwand u; = u’ (here
we need to possibly increase n before). Set now v(t) = w; diag(u*w, uuy)(wi)*.
Then v(t) is unitary for each t € [0, 1], with v(0) = 1,,, and

B uu; 0 e (u 0 uw 0 (u)y* 0y (1, O
V(”_W]( O1 uuT) (wh) _(O u*)( 0 u(u’)*>< 0 u’>_<0 1,

Hence v is a unitary element in M, (SA™). Moreover,

This shows that ' ~, fin M,,(SA™).

Homomorphism property: If x,x’ € K;(A), represent them by unitaries u,u’ € U} (A).
By Lemma 5.5, we have x + x’ = diag(u,u’). Let (W)iep,) and (W})iep,1) be ho-
motopies of unitaries in M,,(A") with wy = w; and w; = diag(u,u*), w; =
diag(w, (W)*) and let f,f" € My,(A") be the corresponding projections so that
Na(x) = [fl — [La], na(x’) = [f'] — [1]

We define v, = s diag(w, w})s*, where s € My, (C) C My (A™) is the permutation
matrix that previously appeared in (55). This gives a homotopy (vi)iejo,1; with vo =
14, and v; = (diag(u,w’,u*, (u’)*)). Hence

nalx +y) = [g] — 1], where g(t) =w (lé“ 8) Vy.
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But

I, 0 .  (we O 0 wy 0 . f 0\ .
Vilo o/ 7% 0 w 1, o wy)® %o )%
0

hence, since the loop constant equal to s defines an element of My, (C) C My, ((SA)*),
we have

nalx +x') = [g] — [12n) = [f] — 1] + [f'] — [1] = na(x) +na(x’),

as desired.

Injectivity: Let x € K;(A) withma(x) = 0. Represent x = [u] with u € U} (A) and let
f(t) = wydiag(1,,0)w; € My, (A™), where f is a homotopy from diag(u, u*) to 1,, in
M. (A). Then

0 =na(x) = [fl — [1,]

in Ko(SA)
We first treat the special case that f ~, diag(1,,0) in My, ((SA)"). This means that
there exists a homotopy (vi)iecp,) of unitaries in My, (A™) with vo = v = 1,, and for

all t € [0,1],
1n O * 1T‘L O *
( O O) — vtf(t)vt = VWi ( O O> (tht) .

By Lemma 5.7, viw; has the form vyw; = diag(u, u}) for homotopies of unitaries
(we)tepo,1, (Ui)iepo,11- By construction, uy = 1,, and u; = u, so that (1)), implements
u ~ 1,,. Therefore x = [u] = 0.

We finish by showing that the general case can be reduced to the special case just
treated. In general, [f] — [1,,] = 0 only means that diag(f, 1,,) ~, 1.m for some m € N
and all t € [0, 1]. Write u’ = diag(u, 1) € M,:m(A™) (which is also a representative
for x) and let (W})cp,11 be the homotopy from diag(u’, (u')*) to 1oniom given in (54).
Then as calculated in (55),

1, 0 0 O
. | 0 1y 0 AT /
dlag(f(t)) 1m) ~u Wy 0 0 0 0 (Wt) = f (t)
0O 0 00

Thus
nA(X) - [ﬂ - [ln] - [(dlag(f) 1m))} - [1n+m] - [f/] - [1n+m])

where by the choice of f, we have f' ~, 1,,4m in Moniom ((SA)T). This reduces to the
special case above.

Surjectivity: Lety € Ko(SA). By Prop. 2.19(a), we can represent y = [f] — [1,] for some
n € N and some projection f € M ((SA)") with f — 1, € M (SA). As discussed in
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Prop. 3.14 there exists m > n and a homotopy (wi)ejo,1; of unitaries in M,,(A™) such
that f(t) = wy diag(1,,0)ws for all t € [0, 1]. Moreover, we may assume that m = 2n
(otherwise represent y = [(diag(f, 1x))] — [1n4«] for some suitable k instead). We now

have .
1, 0\ B 1, .

so by Lemma 5.7, w; = diag(u,v) for unitaries u,v € U} (A). If now (W})icp, is a
homotopy of unitaries with wy = 1,, and w} = diag(u,u*), then by definition, we
have

1, O .
() = [F1 - 1), where (1) =w| ( : O) (W),
To see that y is in the image of 4, we will show that [f'] — [1,] = y.
Suppose first that v ~, u* in U} (A). Then there exists a homotopy (s¢)tecp,11 of uni-
taries with sy = 1,, and s; = v*u*. Therefore

flt) = 1, 0\ . 1, 0\ /1, O\ /1, O *W*
“Wielo o)™ T™lo s )0 o)\o s/ ™
T O\, vewpey.s (I O\,

—Wt(o St> (Wt)f(t)wt<o St) Wy

for all t € [0,1]. Now one easily checks that homotopy (w; diag(1,, s¢)(w})*) starts
and ends at 1,,, hence defines a unitary element in M,,((SA)") and implements
f~y .

In general, diag(u,v) ~ 1, only implies that diag(u,1,,) ~n diag(v,1,,) for some
m € N, but this case can be reduced to the previous one by stabilising appropriately,
as before.

Commutativity of (52): Let x € K;(A) and represent x = [u] with u € U, (A). Let
moreover (Wy)cp,1) be a homotopy with w; = diag(u,u*) and wy = 1,,, so that
na(x) = [f] — [1,] with f(t) = wydiag(1,,0)w;. Then K;(®)(x) = [®*(u)] and
(O (Wt))tep,1) is @ homotopy between diag(®*(u), ®*(u)*) and 1,,. Therefore

ne([0F (1)) = [qﬁ(wt) (1(;* 8) cD*(wt)*} — 1) = [(@7 ()] — [1.]
hence
g 0 Ki(@)(x) =ng([@"(u)])
= [(@7(f)] - [
= Ko(SO)([f] — [1.])
= Ko(SD@) omal(x),
as desired. O
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Example 5.8 (The Bott element, again). The function z € SC* = C(T) is unitary and
hence defines an element of K;(SC). We calculate the image of the class [z] under
Nsc : Ki(SC) — Ko(S*C). To this end, we need a path w of unitaries with w(0) = 15,
w(1) = diag(Zz, z). The standard construction, exhibited in the proof of Prop. 2.6(d), is

wo=(3 D) (8 @) 6 DR @),

2

which is just ug., defined in (45). Hence

T]([Z]) - [uBott (é 8) qutt‘| - [((1) 8)} - b)

the Bott element.

5.3 The index map

Definition 5.9 (Index map). Let A be a C*-algebra and ] C A a closed ideal. Let 6
be the boundary map to the short exact sequence (25). The index map is the group
homomorphism Ind : K;(A/]) — Ky(]) making the diagram

Ki(A/]) —25 Ko(S(A/]))

\
N
\\ 6
~
~
\\

T K()

commutative.

Proposition 5.10 (Formula for the index map). Let A be a C*-algebra and ] C A a
closed ideal. Given u € U} (A/]), choose w € U3, (A) with 7" (w) = diag(u, u*). Then

Ind([u]) = {ﬁ» (10“ g) 17\3*} — Klo“ g)] € Ko(]). (56)
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Proof. We remark first of all that such a lift w exists by Corollary 3.4). Observe that
Ind([u]) does not depend on the choice of lift. Namely, if W’ is another left, then we
set v = w'w* and observe that 7" (v) = 1,,,, hence v € Ky(J*). Therefore, in V(] 1), we

(5 )@= [ (5 o)) =[+(5 o) ]

We may therefore assume that w ~, 1,, (such a lift exists by Corollary 3.4) . In this
case, let (Wy)icp,1) be a continuous family of unitaries w; € Uj, (A) such that wy = 15y,
wq = w. Set moreover w, = " (wy) for t € [0, 1]. Then by the definition of 1,

() = [~ [, f(t) = wy (1(; g) e

Moreover, the path f of projections in M, (A") given by f(t) = Wy diag(1,,0)w; is a
lift of f, hence by the formula (37), we have

5([f]) = [f(1)] — [f(0)].

But this is precisely (56). O

Proposition 5.11. Let A be a unital C*-algebra and let ] C A be a closed ideal. Let
v € A be a partial isometry such that 1 —v*v € Jand 1 —vv* € ]J. Then ©t(v) € U(A/])

and
Ind([t(v)]) = [1 —v*v] — [1 —w*] € Ko(]).

Here we use Remark 5.3 to identify U(A/]) with U"(A/]), in order to see how (V)
defines an element of K;(A/]).
Proof. Since 1 —v*v,1—vv* € ], we have

n(v)'n(v) =n(vv) =1 and n(v)m(v)" = 1.

Hence 7t(v) is indeed unitary in A/]. Moreover, one easily checks that

v 1—w*
u:= (l—v*v v ) € My(A)

is a unitary lift of diag(m(v), t(v)*) € My(A/]). Now by (56), we have

1 0\ . 10
= (o )] [ o)
=[5 2 5] o)l
0 1—-v'v 00
=W+ [1—v'v] —[1]
=[1—-vv—[1—-w,
where we used that [1] = [w*] 4 [1 —v*] (see e.g. the proof of Prop. 2.19(a)). O
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Example 5.12 (The Bott element, once more). Because the adjoint shift operator S* &
T, = T is a partial isometry lifting the unitary Z € SC*, we have by Prop. 5.11

Ind([z]) =[1—SS"]—[1—S"S] = [1—-SS§7].

This gives another proof that nsc([zl) is a Bott element.

Remember that an operator T € B is called Fredholm if t(T) € B/K is invertible. In this
case, its index is defined as

ind(T) := dimker(T) — dim coker(T) = dimker(T) — dim ker(T™).

Remark 5.13. Let T € B be a Fredholm operator. That 7t(T) is invertible means that
there exists a parametrix S € B with TS —1 = K € Kand ST -1 = L € K. Hence
ker(T) C ker(ST) = ker(1+L), which is the eigenspace to eigenvalue —1 of L. But since
L is compact, this is finite-dimensional. Similarly, ker(T*) C ker(S*T*) = ker(1 + K*) is
finite-dimensional. Thus ind(T) is well-defined.

Proposition 5.14. Let V € B be partial isometry which is Fredholm. Then
Ind([7t(V)]) = [Pker(v)] — [Pxer(v+)] (57)

where Pierv) and Py (v+) are the orthogonal projections onto ker(V), respectively
ker(V*) and Ind is the index map for the pair K C B. In particular,

T(Ind(7(V))) = ind(V), (58)

where 7 : Ko(K) — Z is the isomorphism that sends a rank one projection to 1 € Z.

Proof. We claim that
1-V*'V= Pker(V)) and 1- VW= Pker(V*)- (59)

Indeed, if ¢ € ker(V), then (1—V*V)p = ¢, whileif ¢ € ker(V)+ =im(V*), we have
@ = V* for some | € H. Therefore using (12)

1-VV)e=0—-VWYP=0—-VYP=0p—¢=0.

This shows the first identity in (59); the second follows from replacing V by V*. For-
mula (57) is now a consequence of Prop. 5.11.

Formula (58) follows from observing that t([P] — [Q]) = tr(P) — tr(Q) (see Exam-
ple 2.20) and that the trace of a projection is equal to its rank. O
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5.4 The exponential map

We start by deriving a more explicit formula for the Bott map in terms of the K; group.

Proposition 5.15. Let A be a C*-algebra. For a projection p € M, (A"), define the
projection loop f, € M, (C([0,1],A")) by

fo(t) = e "p + 1, — p. (60)
Then the composition B/ :=nga o Ba : Ko(A) — K;(SA) is given by the formula
Ba(p] — [al) — [fyfel.

for projections p, q € M, (A") such thatp — q € M, (A).

Remark 5.16. We generally do not have f, € U (SA). However, if [p] — [q] € K;(A)
such that p — q € M,(A), then ea(p) = ea(q). Since ex(f,(t)) = fc,(p)(t) € Mo (C), we
therefore obtain ex (f4(t)fq(t)*) = 1, in M, (C), hence f,f; € UL (SA).

Proof. It suffices to verify this for unital algebras A, since g, o B4 is the restriction of
Nsa+ © Bas- AsTsa © Ba is homomorphism, it moreover suffices to verify that

nsalFf,]) = b x [p] = [Ppos @ Pl — K}) 8) ®p] .

To calculate the left hand side, we need to choose a path w in U3, (SA) connecting 1,,
to diag(f,, f;,); in other words, an element w € C(I0, 112, A) with w(t,0) = w(0,s) =
w(l,s) =1y, and w(t, 1) = diag(f,, f;). Then

wa=[o (5 o] (05 )
A possible choice is

(5 ) () 296 (3 =6
:(COS(?)P —Sln )( cos 772 sm(g

sin () zp  cos (

N

10
= Upott @ P + (O 1) ® (1. —p),

where we wrote z = e?™ and ug.y is the unitary (45) used in the definition (46) of the
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Bott projection. Therefore

nSA([pr)z[uBoﬂ( )uBott@@] K ) (1n—p)]—[(1(; 8)1
— [pport ® Pl — [(g O)@p]

which is what needed to be shown. OJ

Definition 5.17 (Exponential map). Let A be a C*-algebra and ] C A be a closed ideal.
Then the corresponding exponential map is the map Exp : Ko(A/]) — K;(]) such that the
square

BA/J

(A/I) Ko(S*(A/]))
EXP. l% (61)

v

Ki(]) —=— Ko(S)),

commutes, where So is the boundary map to the suspended ideal S] C SA.

Proposition 5.18 (Formula for the exponential map). Let A be a C*-algebra and let
] C A be a closed ideal. The exponential map can be described as follows. Given
x € Ko(A/]), represent x = [p] — [1,] with a projection p € M,,((A/])*), n > k such that
p— 1 € M,,(A/]). Then

Exp(x) = [exp(2mip)], (62)

where p € M,,(A") is some self-adjoint lift of p.

Remark 5.19. We emphasize that p is not required to be a projection as well. In fact, if
P € M,,(A") is also a projection, then it has spectrum o(p) C {0, 1}, hence exp(2nip) =
1,, which represents the zero element of K;(J). So in this sense, the exponential map
provides a measure of the failure of p to lift to a projection.

Proof. Observe first that indeed exp(—2mip) € U (]), as it is a unitary in M, (J*) and
7t (exp(2mip)) = exp(2mip) = 1y,

hence exp(2mtip) — 1., € My (]).
As before, we may assume that A is unitary. Let p € M, (A/]) be a projection. To use
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the previous results, extend the Diagram (61) as follows:

Ki(S(A/]))

J/nS(A/I]

Ko(A/]) =25 KalSHA/D) |

Exp | ls&
Y+

Ki(]) —2— Ko(S)),

/
Basy

where SInd : K;(S(A/])) — Ky(S]) is the index map corresponding to the suspended
ideal S] C SA. Then by Prop. 5.15 and Def. 5.9, we can write

(880 Bay)(lpl) = (Sdomsiam)([fp]) = SInd([fy]),

We then want to verify
S Ind([f,]) =n;([p)).

To calculate the left hand side, let w € M;,(SA) be a unitary lift of diag(f,, f;), that
is w(0) = w(1) = 15, and 7" (w(t)) = diag(f,(t), f;(t)) for all t € [0, 1]. Then by the
formula for the index map, Prop. 5.10, we have

SInd([f,]) = [Vv (15 8) VV} B Klon Sﬂ

On the other hand, let p € M, (A) be a self-adjoint lift of p and define u(t) :=
exp(2mitp). Then

mh(U(t)) = exp(2mitp) = e?™Mp + 1, —p = ()"

st =m0 (U gy

Therefore, if we set

then 7+ (v(t)) = 1,, for all t € [0, 1], hence we obtain a continuous path of unitaries
in M, (J*) with v(0) = 1, and v(1) = diag(exp(2mip), exp(—2mip)). Therefore, by
definition of nj,

ny([exp(2mip)]) = _v (151 8 v

This finishes the proof. O



5.5 The six-term exact sequence

Theorem 5.20 (The six-term sequence). Let A be a C*-algebra and let ] C A be a closed
ideal. Then the six-term sequence

Ko(J) — 2 Ko(A) —21s Ko(A/])

Ind)I\ lEXp

Ki(A/]) ST Ki(A) T Ki(])

is exact.

Proof. So far, from Thm. 3.10, we know the exactness of the (non-dashed) spiral se-
quence

Ko(S(A/T)) TRosm Ko(SA) TRy Ko(S]).
0 (o7 olSt
However, the Bott periodicity isomorphisms (dashed) provide an exact Ky-KoS-six-
term sequence, where the right boundary map Ko(A/J) — Ko(S]) is Sd o ;. Here
the commutativity of the above diagram follows from naturality of 3. The commu-
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tativity of the diagram

Ind:’ \‘l
| Ko(S(A/])) G Ko(SA) AT Ko(S]) PExp
\\\\ TIA/J:' nA{I n]:' /,’
" Ky(A/]) T Ky (A) A Ki(]), ¢

which follows from naturality of 1, then implies the exactness of the corresponding
Ko-Ki-sequence. O
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